Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamental change to Immunology 101

06.08.2004


Penn researchers pinpoint identity of early-stage t-cells circulating in blood



T cells are critically important for human immunological defenses against pathogens, yet little is known about their early development. T cells are made in the thymus, but ultimately come from hematopoietic stem cells in the bone marrow, from which all blood-cell types begin. A progenitor cell must leave the bone marrow to seed the thymus, eventually giving rise to T cells. The identity of this cell has long been sought and might help correct disorders of T-cell production, says Avinash Bhandoola, MD, PhD, Assistant Professor of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine.

Bhandoola and Benjamin Schwarz, a fifth year MD/PhD student, identified such a cell. "Our work really provides the tools," says Bhandoola. "Everyone can now study this cell, and a better understanding of early steps in T-cell development should follow." They describe their findings in the current advance online publication of Nature Immunology.


Hematopoietic stem cells (HSCs) are the ultimate progenitors of all blood cell types, from platelets and red blood cells (erythrocytes) to immune cells like T cells and B cells. But T-cell development differs from other cell lineages in that it occurs in the thymus, a small organ situated under the breastbone near the heart, rather than the bone marrow. To do this, though, the thymus periodically imports marrow T-cell progenitor cells via the circulatory system. The cell types that travel from the marrow to the thymus were not exclusively pinned down, but researchers have suggested HSCs themselves, multipotent progenitor (MPPs) cells, or a common lymphoid progenitor (CLP) cell from the marrow itself, as possible candidates.

In a previous study, Bhandoola along with David Allman, PhD, an Assistant Professor in Penn’s Department of Pathology and Laboratory Medicine, identified the earliest T-lineage progenitor in the thymus and demonstrated that it was not derived from CLPs, as was widely assumed. "I had learned in class that T cells develop from CLPs," explains Schwarz. "The textbook figures would always show an early split in hematopoiesis between the lymphoid lineages [T cells, B cells, NK cells], developing from a CLP, and the myeloid lineages. This is a very elegant model, and I was surprised to find how little direct evidence there was to support the role of a CLP as a physiological T-cell progenitor. That’s why I took on this project, to better understand where T cells actually come from."

To figure out which type of cell reaches the thymus, Schwarz and Bhandoola analyzed the blood of adult mice for early progenitor cell populations. The only way to resolve the exact cell type was to correctly identify progenitors present in the blood, which is a tall order. "It’s known that they must be there, but at very low frequencies," explains Bhandoola.

"Our lab has previously shown that the early T-cell progenitor, found in the thymus, looks like the MPP and HSC in the marrow, so we assumed that the cell in the middle – in the blood stream – would look exactly the same," says Schwarz. And this is what they found. The team used flow cytometry to detect cell types present in low frequencies. Flow cytometry squeezes cells one-by-one past a bank of lasers, detecting which cells fluoresce in a certain way based on a prescribed molecular tag. The suspected early progenitors (HSCs, MPPs, and CLPs) had known differences in cytokine receptors, so the team used these as molecular tags to characterize the different cells present.

What Schwarz found in the blood was cells with a common HSC-MPP-early T-cell lineage progenitor phenotype and none with the CLP phenotype. This implies that there is not a lymphoid stem cell, or CLP, that leads to all lymphoid lineages but has no myeloid potential. Although another research group found a cell in the bone marrow that they named the CLP, this is most likely a misnomer, say Bhandoola and Schwarz. The so-called CLP never physiologically gives rise to T cells, but remains in the bone marrow and develops into NK and B lineage cells.

To further characterize the cell population they isolated from mouse blood, Schwarz transferred these cells into mice whose bone marrow had been destroyed. For 16 weeks Schwarz determined what blood cell types were being made in these mice and found all lineages – T-cells, B-cells, and myeloid cells. From this he inferred that the circulating cell type is either an HSC or the MPP. They concluded that both were present in blood, but it is still unclear which of these can enter the thymus.

Finally being able to pinpoint what cell type connects the bone marrow to the thymus in T-cell production may help researchers understand what happens when this part of hematopoiesis goes awry. "If you want to understand where T cells come from and what goes wrong when you stop making T cells, we need to know exactly what this cell type is," says Bhandoola. As humans age, the thymus makes fewer T cells. "To understand that you have to know what cell actually is a T-cell progenitor."

In bone-marrow-transplant patients, every blood-cell lineage comes back relatively rapidly after the new marrow is received, except for T-cells, which tend to be difficult to reconstitute, particularly in older patients. What about this process of T-cell production happens less efficiently after a transplant? "Now we can ask these questions. Does this process change as we get older and what can we do about it?," asks Bhandoola.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>