Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad news for pathogenic bacteria: Scientists find protein essential for bacterial survival

06.08.2004


Further investigation into how the common organism Escherichia coli regulates gene expression has given scientists new ideas for designing antibiotics that might drastically reduce a bacterium’s ability to resist drugs.


A transmission electron micrograph of Escherichia coli (E.coli). (Image -- New York State Department of Health)



The findings, reported in the current issue of the journal Cell, suggest that bacteria rely on a key protein in order to properly regulate gene expression -- a process fundamental to cell survival. This protein, called DksA, coordinates the expression of numerous genes in response to environmental signals.

Figuring out how to block DksA production in harmful bacteria may help scientists develop antibiotics that these bacteria are less likely to resist, said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University.


The current study suggests that DksA is the glue that holds together two key components of bacterial gene expression – a molecule called ppGpp and an enzyme called RNA polymerase. RNA polymerase carries out transcription, the first step in gene expression.

In recent work, Artsimovitch and her colleagues discovered that ppGpp regulates gene expression by controlling amino acid production in bacteria. A cell makes ppGpp when amino acid levels are low, and ppGpp tells a cell to go dormant until amino acid levels return to normal.

"But there was something missing from the ppGpp story," Artsimovitch said. "We knew that ppGpp had a dramatic effect on gene expression, but for some reason that effect was drastically decreased when we conducted experiments in the laboratory."

Work by other researchers had suggested a link between DksA and the ppGpp-initiated stress response in the cell. But scientists couldn’t agree on what role, if any, DksA played in the effect of ppGpp on gene expression.

Working with a team of researchers led by Dmitry Vassylyev, a scientist with the RIKEN research institution in Japan, Artsimovitch and Ohio State microbiologist Vladimir Svetlov solved high-resolution crystal structures of DksA.

Solving this structure meant that the researchers could at last determine just how DksA helped ppGpp hold fast to its target, RNA polymerase.

DksA uses something scientists call the "backdoor of gene expression," a cavity on the RNA polymerase molecule called the secondary channel. DksA squeezes through this narrow tunnel toward the site where ppGpp binds to the enzyme. Once here, the protein helps ppGpp stay bound to RNA polymerase.

"The secondary channel seems to be the hotspot for many interactions," Artsimovitch said. "It leads straight to the active site, and presents a confined area where many proteins and antibiotics that control transcription may bind to carry out their business."

Knowing what roles ppGpp and DksA play in how bacteria respond to stress and other physiological stimuli may help scientists create new antibacterial drugs that target mechanisms specific and unique to harmful bacteria.

"Conventional antibiotics aimed at killing bacteria also put immense pressure on bacteria to survive, and to ultimately develop resistance to these drugs," Artsimovitch said. "Forcing harmful bacteria into a stationary state by controlling ppGpp levels may be the way to circumvent the rise in antibiotic resistance.

"ppGpp and DksA are found in all bacteria, including harmful ones," she continued. "Using ppGpp-based compounds to shut down gene expression in harmful bacteria could help curb the spread of infections."

Grants from the National Institutes of Health and from RIKEN supported this research.

Artsimovitch, Vassylyev and Svetlov conducted the study with Anna Perederina, Marina Vassylyeva, Tahir Tahirov and Shigeyuki Yokoyama, all with RIKEN.

Irina Artsimovitch | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>