Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral proteins may prevent bacterial infections

05.08.2004


Researchers from Rockefeller University are enlisting proteins produced by viruses in a novel strategy that may someday help prevent bacterial infections in hospitals and nursing homes.

Bacterial viruses, or bacteriophage, worm their way into bacterial cells, copy themselves and then, as an exit strategy, produce enzymes that quickly destroy the bacterial cell wall, killing the bacteria and releasing the viral offspring.

"These are highly evolved enzymes that work efficiently and rapidly to kill specific bacteria. The best use of these enzymes is to decolonize humans from carrying pathogenic bacteria in certain settings, such as hospitals, nursing homes and day care centers," says Vincent Fischetti, who is presenting data today at the American Society for Microbiology’s Conference on the New Phage Biology.



Bacteria such as group A streptococci, Streptococcus pneumoniae and Staphylococcus aureus are common causes of infections, ranging from minor skin infections and ear infections in day care centers to deadly pneumonia in nursing homes and hospitals. In most instances human beings are the only reservoir of these bacteria, often carrying them unknowingly in their nose or throat. Enzymes targeting these bacteria could be delivered orally or nasally to reduce or eliminate colonization.

"If you greatly reduce the number of bacteria that are carried by individuals in these settings, the chance of infection will be minimized or even eliminated," says Fischetti.

In animal model experiments, Fischetti and his colleagues colonized mice with streptococcal or pneumococcal bacteria, either orally or nasally. They were able to remove the colonization completely using phage enzymes delivered in a single dose.

Because these enzymes are derived from viruses that infect and kill specific bacteria, they are like smart bombs that target and kill only the species or strain of bacteria for which they were designed. They will not harm human cells or the beneficial microorganisms that live in the nasal passages and throat and help protect against other infections.

The strength and specificity of these enzymes also makes them good candidates for treating infections as well. As they are larger molecules than antibiotics, Fischetti is unsure whether they can reach everywhere in the body that antibiotics do.

"Until we do more animal studies we don’t know how these enzymes will be distributed throughout the body," says Fischetti. "We do know that if given intravenously they can kill organisms in the blood."

Fischetti and his colleagues have identified a lytic enzyme from a virus that infects Bacillus anthracis, the bacterium that causes anthrax and are currently testing it in animals as an adjunct therapy against the disease. The hope is that the enzyme will eliminate enough bacteria from the blood after anthrax exposure to extend the window of time during which antibiotic therapy will be effective.

Jim Sliwa | EurekAlert!
Further information:
http://www.asm.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>