Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Viral proteins may prevent bacterial infections


Researchers from Rockefeller University are enlisting proteins produced by viruses in a novel strategy that may someday help prevent bacterial infections in hospitals and nursing homes.

Bacterial viruses, or bacteriophage, worm their way into bacterial cells, copy themselves and then, as an exit strategy, produce enzymes that quickly destroy the bacterial cell wall, killing the bacteria and releasing the viral offspring.

"These are highly evolved enzymes that work efficiently and rapidly to kill specific bacteria. The best use of these enzymes is to decolonize humans from carrying pathogenic bacteria in certain settings, such as hospitals, nursing homes and day care centers," says Vincent Fischetti, who is presenting data today at the American Society for Microbiology’s Conference on the New Phage Biology.

Bacteria such as group A streptococci, Streptococcus pneumoniae and Staphylococcus aureus are common causes of infections, ranging from minor skin infections and ear infections in day care centers to deadly pneumonia in nursing homes and hospitals. In most instances human beings are the only reservoir of these bacteria, often carrying them unknowingly in their nose or throat. Enzymes targeting these bacteria could be delivered orally or nasally to reduce or eliminate colonization.

"If you greatly reduce the number of bacteria that are carried by individuals in these settings, the chance of infection will be minimized or even eliminated," says Fischetti.

In animal model experiments, Fischetti and his colleagues colonized mice with streptococcal or pneumococcal bacteria, either orally or nasally. They were able to remove the colonization completely using phage enzymes delivered in a single dose.

Because these enzymes are derived from viruses that infect and kill specific bacteria, they are like smart bombs that target and kill only the species or strain of bacteria for which they were designed. They will not harm human cells or the beneficial microorganisms that live in the nasal passages and throat and help protect against other infections.

The strength and specificity of these enzymes also makes them good candidates for treating infections as well. As they are larger molecules than antibiotics, Fischetti is unsure whether they can reach everywhere in the body that antibiotics do.

"Until we do more animal studies we don’t know how these enzymes will be distributed throughout the body," says Fischetti. "We do know that if given intravenously they can kill organisms in the blood."

Fischetti and his colleagues have identified a lytic enzyme from a virus that infects Bacillus anthracis, the bacterium that causes anthrax and are currently testing it in animals as an adjunct therapy against the disease. The hope is that the enzyme will eliminate enough bacteria from the blood after anthrax exposure to extend the window of time during which antibiotic therapy will be effective.

Jim Sliwa | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>