Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein vaccine fully protects mice from lethal aerosol challenge with ricin toxin

05.08.2004


Scientists have developed an experimental vaccine against ricin, a potential biological threat agent, which fully protected mice from aerosol challenge with lethal doses of the toxin. The study was performed at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID).

Ricin is a toxin derived from the castor plant, which is grown throughout the world for commercial purposes. Approximately one million pounds of castor beans are used each year in the process of manufacturing castor oil.

When inhaled as a small-particle aerosol, ricin produces severe respiratory symptoms followed by respiratory failure within 72 hours. When ingested, ricin can cause severe gastrointestinal symptoms followed by vascular collapse and death.



Given its ready availability and its high level of toxicity--particularly when delivered as an aerosol--ricin is a significant potential agent of biological warfare or terrorism. Currently, there is no vaccine or therapy available for human use.

According to lead investigator Mark A. Olson, Ph.D., ricin is composed of two different protein subunits called the A-chain and the B-chain. The ricin B-chain (RTB) binds the toxin to the cell surface, an interface that is essential for the ricin A-chain (RTA) to enter the cell. Once inside the cell, RTA effectively stops new protein synthesis and causes cell death.

Previous attempts to develop a ricin vaccine suggested that isolated RTA could induce protective immunity against the toxin in animals. However, using RTA as a vaccine component was problematic because it was not stable--it failed to maintain its structural integrity when heated or placed in solution, resulting in clumping and separation. The safety and efficacy of a vaccine depend upon the stability of its formulation.

The new vaccine candidate, called RTA 1-33/44-198, is a fragment of the ricin A-chain that has been modified to eliminate the toxic enzymatic property of RTA, increase protein stability, and maintain its ability to elicit a protective immune response.

In the August online issue of Protein Engineering, Design and Selection, Olson and his team--John H. Carra, Virginia Roxas-Duncan, Robert W. Wannemacher, Leonard A. Smith, and Charles B. Millard--describe using a combination of molecular modeling and protein engineering to design the new vaccine. The team started with an extensive computer-aided analysis of the toxin structure, using a three-dimensional model provided by colleagues at the University of Texas, Austin.

"We compared ricin with other proteins of the same family," Olson explained. "We tried to figure out where the protein molecules are diverging within the family--to see what changes were made by nature so we could make the changes we needed to make."

To improve upon its stability--in effect, to make it go against its natural tendencies--Olson and his team had to change the structure of the RTA molecule. Once they had developed the necessary genetic sequences, they handed them off to Smith and others at USAMRIID for protein engineering.

"We went straight from the computer to molecular biology," explained Smith. "We had to clone and purify the proteins, and test them in animals for toxicity and protection."

RTA 1-33/44-198, the most promising vaccine candidate, was tested in three groups of ten mice each. One group received the purified protein alone; a second group received the protein plus an adjuvant called Alhydrogel; and a third group served as the control, receiving an injection of saline solution instead of the vaccine.

Purified RTA 1-33/44-198 protected 10 out of 10 mice from a whole-body aerosol challenge with lethal doses of ricin. The survival rate was the same with or without the adjuvant. All 10 animals in the unvaccinated control group died.

"Molecular modeling and protein engineering represent a significant step forward in vaccine development," said George V. Ludwig, Ph.D., acting science director for USAMRIID. "In the past, our reliance on using natural proteins and other immunogens limited our ability to make useable and producible vaccines. New techniques such as those described offer nearly unlimited possibilities."

According to Smith, the next step will be to test the new ricin vaccine in nonhuman primates. He said the team also is working to refine a scaled-up production method that is robust and reproducible. This involves optimizing the fermentation process, developing a process for purification, and refining the analytical methods for characterizing both the manufacturing process and the final product. In addition, USAMRIID is conducting pre-formulation studies to produce a formulated vaccine that will induce the optimum immune response possible in animal models.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>