Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Killer Virus Emerged: Changed Environment + Mutation = Evolution

04.08.2004


It’s a medical mystery: Exactly how do emerging viruses such as SARS, HIV and hantavirus suddenly burst forth, seemingly from nowhere, to start infecting people and causing lethal diseases, sometimes in epidemic proportions?



In research that shines light on this worrisome phenomenon, a team of scientific sleuths based at the University of Texas Medical Branch at Galveston (UTMB) has examined and tested viruses from two late-20th-century outbreaks of Venezuelan equine encephalitis (VEE)—a deadly illness that can cause brain inflammation in horses and people—and compared them with a very similar virus that doesn’t tend to infect horses or people. The outbreaks occurred in 1993 and 1996 in deforested regions of the Mexican states of Chiapas and Oaxaca. In at least this case, the solution to the mystery is, as Sherlock Holmes might put it, “Evolutionary, my dear Watson.”

The scientists cite evidence suggesting that by replacing forests with ranchland along a 500-mile-long, 20- to 50-mile-wide swath of Mexico’s and Guatemala’s Pacific coastal plains, people put extreme evolutionary pressure on the strain of the VEE virus formerly prevalent there. This VEE virus previously was believed to be spread by a particular sub-species of mosquito known as Culex (Melanoconion) taeniopus as that feeds mainly on and infects rodents and other small mammals but that is not thought to be effective at transmitting the virus to horses or people to cause epidemics.


In a paper to be published in the Aug. 3 issue of the Proceedings of the National Academy of Sciences (PNAS), the researchers suggest that as deforestation wiped out the Culex sub-species, a single genetic mutation in the virus allowed it to move into a brand new niche. The mutation increased its ability to infect and be transmitted by an entirely different species of mosquitoes, called Ochlerotatus taeniorhynchus—which prefers for its blood-meal to feed on horses and other large mammals.

The virus-altering mutation was described as a single change, or substitution, in an amino-acid building block of the envelope glycoprotein. The envelope glycoprotein is the primary part of a virus that worms its way into the cells of host species via the host cells’ receptors. In addition to facilitating the virus’s infection of a new vector species (as insects and other organisms that transmit diseases are called), the researchers found that this amino acid substitution also had the effect of abruptly making the virus much more infectious and easily transmitted by this mosquito to horses and people.

No samples exist today of the VEE virus strain that once circulated between mosquitoes and small mammals in forests and swamps along the Chiapas and Oaxaca coastal plains. But the researchers had access to samples of a similar VEE virus widespread in the nearby coastal Guatemalan community of La Avellana between 1968 and 1980. By making a DNA copy of that Guatemalan virus genome, the scientists were able to prompt mutations in the lab that resulted in amino acid changes in the envelope glycoprotein. Just one of those changes in the Guatemalan virus, it turned out, controlled the infectivity of the virus for the mosquito species Ochlerotatus taeniorhynchus.

“What’s troubling,” said Professor Scott C. Weaver, director for emerging infectious diseases at UTMB’s Center for Biodefense and Emerging Infectious Diseases and senior author of the paper, “is that this shows a virus can find a simple genetic mutation that allows it to switch to a new species of mosquito that has the capacity to infect horses and people.”

“If the coastal plains were still forested, we wouldn’t have this new virus,” Weaver continued. “Environmental changes can create opportunities for viruses and other microbes to change their vectors and their host ranges. In this case, the environmental change resulted in a change in vectors to mosquitoes that are highly attracted to horses and human beings.”

VEE, like SARS, HIV and hantaviruses, is an RNA virus, meaning that its genetic material is encoded in a single-strand RNA molecule rather than the double-stranded structure characteristic of the DNA double helix. “RNA viruses have the capacity to mutate so frequently that they are able to respond very readily to new environmental opportunities we provide them or selective pressures we put on them,” Weaver said. The result is a kind of microbiological arms race in which the microbes keep pace with, or some times surge ahead of, attempts to control them.

“Many microbiologists would agree that nature is a more dangerous producer of new microbial threats than any bioterrorist ever will be,” Weaver concludes.

| newswise
Further information:
http://www.utmb.edu
http://www.pnas.org/cgi/doi/10.1073/pnas.0402905101

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>