Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How a Killer Virus Emerged: Changed Environment + Mutation = Evolution


It’s a medical mystery: Exactly how do emerging viruses such as SARS, HIV and hantavirus suddenly burst forth, seemingly from nowhere, to start infecting people and causing lethal diseases, sometimes in epidemic proportions?

In research that shines light on this worrisome phenomenon, a team of scientific sleuths based at the University of Texas Medical Branch at Galveston (UTMB) has examined and tested viruses from two late-20th-century outbreaks of Venezuelan equine encephalitis (VEE)—a deadly illness that can cause brain inflammation in horses and people—and compared them with a very similar virus that doesn’t tend to infect horses or people. The outbreaks occurred in 1993 and 1996 in deforested regions of the Mexican states of Chiapas and Oaxaca. In at least this case, the solution to the mystery is, as Sherlock Holmes might put it, “Evolutionary, my dear Watson.”

The scientists cite evidence suggesting that by replacing forests with ranchland along a 500-mile-long, 20- to 50-mile-wide swath of Mexico’s and Guatemala’s Pacific coastal plains, people put extreme evolutionary pressure on the strain of the VEE virus formerly prevalent there. This VEE virus previously was believed to be spread by a particular sub-species of mosquito known as Culex (Melanoconion) taeniopus as that feeds mainly on and infects rodents and other small mammals but that is not thought to be effective at transmitting the virus to horses or people to cause epidemics.

In a paper to be published in the Aug. 3 issue of the Proceedings of the National Academy of Sciences (PNAS), the researchers suggest that as deforestation wiped out the Culex sub-species, a single genetic mutation in the virus allowed it to move into a brand new niche. The mutation increased its ability to infect and be transmitted by an entirely different species of mosquitoes, called Ochlerotatus taeniorhynchus—which prefers for its blood-meal to feed on horses and other large mammals.

The virus-altering mutation was described as a single change, or substitution, in an amino-acid building block of the envelope glycoprotein. The envelope glycoprotein is the primary part of a virus that worms its way into the cells of host species via the host cells’ receptors. In addition to facilitating the virus’s infection of a new vector species (as insects and other organisms that transmit diseases are called), the researchers found that this amino acid substitution also had the effect of abruptly making the virus much more infectious and easily transmitted by this mosquito to horses and people.

No samples exist today of the VEE virus strain that once circulated between mosquitoes and small mammals in forests and swamps along the Chiapas and Oaxaca coastal plains. But the researchers had access to samples of a similar VEE virus widespread in the nearby coastal Guatemalan community of La Avellana between 1968 and 1980. By making a DNA copy of that Guatemalan virus genome, the scientists were able to prompt mutations in the lab that resulted in amino acid changes in the envelope glycoprotein. Just one of those changes in the Guatemalan virus, it turned out, controlled the infectivity of the virus for the mosquito species Ochlerotatus taeniorhynchus.

“What’s troubling,” said Professor Scott C. Weaver, director for emerging infectious diseases at UTMB’s Center for Biodefense and Emerging Infectious Diseases and senior author of the paper, “is that this shows a virus can find a simple genetic mutation that allows it to switch to a new species of mosquito that has the capacity to infect horses and people.”

“If the coastal plains were still forested, we wouldn’t have this new virus,” Weaver continued. “Environmental changes can create opportunities for viruses and other microbes to change their vectors and their host ranges. In this case, the environmental change resulted in a change in vectors to mosquitoes that are highly attracted to horses and human beings.”

VEE, like SARS, HIV and hantaviruses, is an RNA virus, meaning that its genetic material is encoded in a single-strand RNA molecule rather than the double-stranded structure characteristic of the DNA double helix. “RNA viruses have the capacity to mutate so frequently that they are able to respond very readily to new environmental opportunities we provide them or selective pressures we put on them,” Weaver said. The result is a kind of microbiological arms race in which the microbes keep pace with, or some times surge ahead of, attempts to control them.

“Many microbiologists would agree that nature is a more dangerous producer of new microbial threats than any bioterrorist ever will be,” Weaver concludes.

| newswise
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>