Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult Stem Cells Migrate to Lung, Contribute to Pulmonary Fibrosis

04.08.2004


Findings: UCLA researchers for the first time identified and then stopped a type of adult stem cell from migrating to the lung and contributing to pulmonary fibrosis in an animal model. Pulmonary fibrosis (i.e, idiopathic pulmonary fibrosis) in humans is a devastating terminal disorder that causes an overabundance of scar tissue to form in the lung.

Impact: The new study may offer novel therapies to treat idiopathic pulmonary fibrosis– currently there are no effective treatments and the mortality rate is approximately 70 percent within five years of diagnosis. Over 80,000 individuals in the United States suffer from the disease.

Authors: Dr. Robert M. Strieter, study senior author and Chief of the Division of Pulmonary and Critical Care Medicine, and Vice Chair of the Department of Medicine at the David Geffen School of Medicine at UCLA, is available for interviews.



Journal: The research appears in the August 2 edition of the peer-reviewed Journal of Clinical Investigation. A PDF of the full study is available.

Background: Previously it was thought that idiopathic pulmonary fibrosis was due to resident fibroblasts/myofibroblasts located in the lung, according to Strieter. “We now have evidence that a specific adult stem cell travels to the lung through the bloodstream where it then can produce collagen that leads to the scar tissue formation.” Using an animal model, researchers also showed that the mechanism causing the adult stem cell to travel to the lung could be blocked, thus reducing the amount of collagen build-up in the lung and reducing pulmonary fibrosis. Researchers will next further study the regulation of the expression of the receptor that is involved in the recruitment process of these cells.

Strieter notes that the new study may also provide insight into new treatments for other disorders, such as connective-tissue diseases (i.e., rheumatoid arthritis) and liver cirrhosis, which, like idiopathic pulmonary fibrosis, all are associated with an overabundance of scar tissue formation. The study is funded by the National Institutes of Health.

| newswise
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>