Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant cancer cells generate mice through cloning

03.08.2004


Nature can reset the clock in certain types of cancer and reverse many of the elements responsible for causing malignancy, reports a research team led by Whitehead Institute Member Rudolf Jaenisch, in collaboration with Lynda Chin from Dana Farber Cancer Institute. The team demonstrated this by successfully cloning mice from an advanced melanoma cell.



"This settles a principal biological question," says Jaenisch, who also is a professor of biology at MIT. "The epigenetic elements of cancer are reversible; the genetic elements, as expected, are not."

Researchers have known for decades that cancer begins when certain key genes in an otherwise healthy cell mutate, and tumor growth depends on continuing, multiple mutations. But only recently have scientists begun to understand the "epigenetic" components of cancer-that is, how other molecules in a cell affect genes without actually altering the sequence of DNA. Many of these epigenetic components, such as methylation, can determine if a gene is silent or active.


Konrad Hochedlinger and Robert Blelloch, postdoctoral researchers in the Jaenisch lab, studied whether any of these epigenetic influences can be reversed. First, they removed the nucleus from a melanoma cell and injected it into a de-nucleated egg cell (a process known as nuclear transfer). After the egg cell developed into a blastocyst, Hochedlinger and Blelloch harvested embryonic stem cells which they then incorporated into a group of healthy mouse blastocysts. Many of these blastocysts developed into normal adult mice. The work was reported in the August issue of the journal Genes and Development.

"It’s important to note," says Blelloch, "that the stem cells from the cloned melanoma were incorporated into most, if not all, tissues of adult mice, showing that they can develop into normal, healthy cells," such as those for skin pigmentation, immunity, and connective tissue. But in spite of this, when certain cancer-related genes in these mice were activated, they developed malignant tumors at a much faster rate than the control mice.

According to Lynda Chin of Dana-Farber’s oncology department, this research opens up the door to developing cancer animal models in which researchers could ask epigenetic questions. "Although studies are ongoing, these findings have provided initial clues of the relative contributions of the epigenetic versus genetic lesions in the development of cancer," she says. "Drugs that target the cancer epigenome may prove to be a key therapeutic opportunity for diverse cancers."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>