Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps scientists reveal interactions between genes and drugs

03.08.2004


Scientists have developed a new screening technique to help them look for genes that change patients’ responses to cancer drugs and other medications.

Researchers looking for such connections confront an enormous hunting ground of approximately 33,000 human genes. Normally their only options for mounting a search in such a vast field are either to rely on anecdotal reports of dramatically altered patient reactions, or to conduct extensive surveys of the genes for all the proteins known to interact with a given drug.

The new approach lets nature and a robotic screening system do the majority of the hunting for them. In their initial test, which will be described in the August 10 Proceedings of the National Academy of Sciences, investigators rapidly found potential connections between two chemotherapy drugs and two regions of human DNA that contain approximately 100 genes each. The study is currently available online.



"This isn’t the answer to everything in terms of finding these links, but it’s an important breakthrough," says senior investigator Howard L. McLeod, PharmD., associate professor of medicine, genetics and of molecular biology and pharmacology. "This approach is very likely to allow us to find links between pharmaceuticals and genes that we never would have been able to anticipate."

McLeod is an expert in pharmacogenetics, a new field where scientists are learning that a person’s genes can dramatically influence the effectiveness of medications. These differences can change a drug that is a lifesaver for some patients into a toxin for others, or influence whether a medication provides little benefit or is a remarkably effective treatment. By identifying genetic factors that affect patients’ responses to drugs, scientists hope someday to enable clinicians to customize treatment plans.

McLeod and colleagues in the Division of Biostatistics took advantage of cell lines established as part of the effort to map the human genome. Researchers at the Centre d’Etude du Polymorphisme Humain in Paris, France have created approximately 700 human cell lines from multiple generations of large families in Utah, France and elsewhere.

Washington University scientists exposed cells from more than 400 of the lines to varying doses of two chemotherapy drugs, 5-fluorouracil and docetaxel. The cells were non-cancerous, but chemotherapy can kill both cancerous and non-cancerous cells. Chemotherapy is given as a treatment for cancer because cancer cells are generally more sensitive to its effects, but many factors, including the genetics of the cells’ non-cancerous precursors, can influence that sensitivity.

Scientists used a robotic screening system to look for cell lines with increased sensitivity to the drugs, demonstrated by higher numbers of cell deaths in response to low drug doses. The robot also highlighted cell lines with high resistance to the drugs where few or no cells were killed.

In the future, patients whose cells are particularly sensitive to chemotherapy may be able to be treated with relatively low doses, reducing side effects. Patients whose cells are particularly resistant may need special or added medications to assure a good outcome.

Scientists already know a great deal about inheritance of genetic markers among the cell lines. This enabled Washington University researchers to compare and contrast the genetics of a cell line with altered sensitivity to cell lines from other family members and from multiple generations of the same family. Children get a random mixture of genes from both parents, so both genetic markers and changes in sensitivity are sometimes passed from parent to child and sometimes aren’t. When a particular genetic marker is consistently passed from parent to child at the same time as a change in sensitivity, that tells scientists they need to look near the marker for a gene that changes sensitivity.

The initial test of the new approach found connections between increased sensitivity to the drugs and areas on chromosomes 5 and 9.

"That part of chromosome 9 turned up in an earlier search we conducted for these genes," McLeod says. "Lightning’s struck twice there now, so we’re definitely going to be looking for a gene that affects sensitivity in this region."

McLeod’s group already has applied the new screening technique to six more cancer drugs, but he says they’ve just begun to find ways to use the new approach.

"This is not a cancer research technique, it’s a drug research technique," says James W. Watters, Ph.D., lead author of the study and instructor of medicine. "We want to find ways to look at new endpoints -- for example, how thoroughly does a drug hit its target of interest, or how much can it slow growth or other cellular processes? Then we’ll be able to look at genetic effects on medications for a range of disorders."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>