Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech’s smelly ’corpse plant’ due to bloom Aug. 4

03.08.2004


Virginia Tech has a second Amorphophallus titanum, or "corpse plant," ready to bloom and emit its intensely powerful stench. People are invited to tie bandanas over their noses and come see the rare and unusual plant.




The horticulture greenhouse containing the plant is open to visitors Monday through Friday, July 26-30, and August 2-6, from 8 a.m. to 4 p.m. The likely date for the plant to bloom is Wednesday, Aug. 4, said Scott Rapier, greenhouse manager in the Department of Horticulture in Virginia Tech’s College of Agriculture and Life Sciences; follow the plant’s progress on the web at http://www.hort.vt.edu/VTHG/ if you want to see it on the date it blooms.

Although a blooming Amorphophallus titanum, or titan arum, is rarely seen, Virginia Tech’s first bloomed in August 2002, drawing crowds who braved the odor and the football traffic to see it. The smelly plant is rare because it puts forth one blossom every four to 10 years. This year, the second plant, located in Virginia Tech’s greenhouse complex, should bloom ahead of football traffic, making it easier for the public to visit the greenhouse. The first of these plants in the United States bloomed in 1937 at the New York Botanical Garden, and since, only about 20 have bloomed in this country.


In 1999, when the plant bloomed in the Huntington Botanical Garden in California, more than 76,000 visitors held their noses and went to see it. In Fairchild Garden in Florida, 5,500 visitors made the trek to see the infamous blossom; and at the Botanic Garden of the University of Bonn, Germany, the line to see the flowering titan arum extended more than two miles.

The plant invests a lot of energy during blooming to heat up the sulfur-based compound in the flower stalk so the carrion-like odor will spread several feet away from the plant to attract pollinators. The plant blooms seldom because of the amount of energy needed to bloom. To add to the plant’s humiliation, its pollinators include carrion beetles and flesh flies.

In spite of the plant’s long preparation for its flowery display, the blooms last, at best, two to three days, so visitors will have to be vigilant to see and smell it. A flowering stalk can be seven to 12 feet in height and three to four feet in diameter. After the bloom dies, a leaf stalk resembling a tree sapling will begin to emerge.

The plant was first discovered in 1878 in Indonesia, first cultivated at the Royal Botanic Gardens in England in 1887. The titan arum is in the same plant family as familiar house plants such as Dieffenbachia, Philodendrons, and Anthuriums.

To get to the greenhouse from Rt. 460, turn onto the Virginia Tech campus at Southgate Drive, turn left on Duck Pond Road, and right on Washington Street. Very shortly, you will see the greenhouses on the right. After taking the road into the greenhouse complex and reaching a gravel section between the glass and fiberglass greenhouses, stop at the first fiberglass greenhouse, number F-6, where the plant is located. Or follow your nose.

Sally Harris | EurekAlert!
Further information:
http://www.vt.edu
http://www.hort.vt.edu/VTHG/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>