Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clusters of alterations on PIK3CA gene found in brain cancers

02.08.2004


Hotspots in two areas of a gene that encodes a specific signaling enzyme, or kinase, are vulnerable to a variety of mutations found in five types of brain cancers, according to a report published in the August 1 issue of the journal Cancer Research.

Mutations in the gene PIK3CA occur spontaneously as part of the brain tumor development rather than being passed genetically between generations, said Hai Yan, M.D., Ph.D., the senior scientist of the studies conducted by a collaborative research team from Duke University, Johns Hopkins University, and the University of Utah.

"PIK3CA mutations are known to occur in as much as 30 percent of colorectal and gastric cancers and glioblastomas and they are also present, to a lesser extent, in breast and lung cancer," Yan noted. "Our studies defined the association of mutant PIK3CA gene in a wider spectrum of adult and pediatric brain tumors as well."



PIK3CA is part of a family of genes that encode lipid kinases, enzymes that modify fatty molecules and direct cells to grow, change shape and move. Kinases have been the focus of recent drug development strategies, with some tumor-inhibiting compounds such as Gleevec, which is a protein kinase inhibitor already in use clinically to thwart tumor growth.

Yan and colleagues pinpointed a cluster of 13 mutations on two particular areas of the PIK3CA gene, exons 9 and 20. The mutations were identified in 14 percent of anaplastic oligodendrogliomas, 5 percent of medulloblastomas, 5 percent of glioblastomas and 3 percent of anaplastic astrocytomas. No PIK3CA mutation variants were found in samples of ependymomas or low-grade astrocytomas.
Nine of the eleven PIK3CA mutations were consistent with alterations observed in the colorectal cancers. Two additional, new mutations were also observed.

Identification of PIK3CA as an oncogene associated with brain cancers opens the door to screening processes that can identify patients for treatment strategies, as well as development of targeted molecular therapeutics aimed controlling brain cancer development through regulation of the errant gene, Yan said.

Yan is an assistant professor of pathology, Duke University Medical Center. His colleagues who contributed to this work include Daniel Broderick, Chunhui Di, Timothy Parrett, Roger McLendon, and Darell Bigner, Duke University; and Yardena Samuels, Jordan Cummins and Victor Velculescu, The Johns Hopkins University Medical Institutions; and Daniel Fults, the University of Utah School of Medicine. This work is supported by the National Institute of Health and Pediatric Brain Tumor Foundation.

Russell Vanderboom, PhD | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht How the insulin receptor works
19.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

How the insulin receptor works

19.02.2018 | Life Sciences

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>