Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescence Spectroscopy Can Distinguish Brain Tumor From Normal Tissue

02.08.2004


When molecules in cells are stimulated by light, they respond by becoming excited and re-emitting light of varying colors (fluorescence) that can be captured and measured by highly sensitive optical equipment.



Now, researchers at Cedars-Sinai Medical Center and the University of Southern California are developing miniaturized spectroscopic instruments and computer software to take a real-time look at biochemical, functional and structural changes occurring within the cells and tissue of the brain. If the technology continues to progress as anticipated, neurosurgeons will be able to shine a light during surgery to diagnose brain tumors instantaneously and they will be able to discern the borders of tumors with greater precision than ever.

Early studies appear to support these possibilities. The researchers report in the July/August issue of Photochemistry and Photobiology that the techniques and device they have developed are able to quickly and accurately discriminate between brain tumor and normal tissue.


Glioblastoma multiforme (GBM), the most common and deadly type of brain tumor, was the subject of the study. Because these tumors grow quickly and invade healthy tissue rapidly, patient survival rates usually are measured in weeks or months despite aggressive treatment with traditional surgery, chemotherapy and radiation. When “image complete” resection is accomplished – no remaining tumor is visible with high-resolution imaging techniques – patients have a median survival of about 70 weeks.

But complete removal is nearly impossible because the tumors aggressively infiltrate neighboring tissue and are irregularly shaped with poorly defined borders. Also, tumor cells tend to migrate away to establish satellites in other parts of the brain. When surgical removal is less than image complete, median survival is less than 19 weeks.

“Although our surgical goal is to remove as much tumor as possible without damaging healthy brain, distinguishing between the two is extremely difficult,” said Keith L. Black, MD, neurosurgeon, director of the Maxine Dunitz Neurosurgical Institute, the Division of Neurosurgery and the Comprehensive Brain Tumor Program.

“Fluorescence spectroscopy is one of several innovative imaging techniques in development, and I think the evolution of this capability comes at a critical time because we are beginning to see encouraging results in several therapeutic approaches,” continued Dr. Black, who holds the Ruth and Lawrence Harvey Chair in Neuroscience at Cedars-Sinai and is one of the journal article’s authors. “The clarity that fluorescence technology appears to offer may provide greater precision in surgery and also help us target cancer cells with a combination of new, highly focused therapies.”

The ability to immediately analyze cells revolves around the fact that different metabolic states and biochemical components emit light differently. Just as a prism splits white light into a full spectrum of color, laser light focused on tissue is re-emitted in colors determined by the properties of the molecules. Analyzing the colors in space and time provides information about the types of molecules present and their conformation.

“With time-resolved laser-induced fluorescence spectroscopy we measure both the wavelength of the emission and the time that molecules stay in the excited state before returning to the ground state. This provides information about the chemical composition of the tissue, about molecular and biochemical changes, as a function of the stages of disease,” said Laura Marcu, PhD, director of the Biophotonics Research and Technology Development Laboratory at Cedars-Sinai.

A research associate professor of electrical and biomedical engineering at USC’s Viterbi School of Engineering, Dr. Marcu is directing several USC graduate students and postdoctoral fellows in the creation of the optical imaging devices, hardware and software. She is working in conjunction with the neurosurgeons and researchers at the Maxine Dunitz Neurosurgical Institute to adapt the system’s clinical applications to central nervous system tissue, and is collaborating with cardiologists to pursue spectroscopic detection of atherosclerosis.

According to Dr. Marcu, first author of the article, the researchers found that high-grade gliomas are characterized by fluorescence emissions of longer duration overall, compared to those of normal tissue. Furthermore, gliomas can be distinguished by fluorescence lifetimes that differ at various wavelengths: glioma fluorescence is long-lived at certain short wavelengths but short-lived at some longer wavelengths. Analyzing the tissue in terms of both fluorescence intensity and fluorescence lifetime provides information that translates into a high level of diagnostic specificity.

Currently, the spectroscopic system consists of an optical instrument about the size of a ballpoint pen that is connected by a fiber-optic cable to a computer. Through a lens at the tip, the probe provides light and magnification for surgeons. Light from a nitrogen laser can be used to stimulate the molecules within cells and the light emitted from the cells is sent back to the data processing system.

The equipment is enabling the research teams to acquire accurate, repeatable measurements in living tissue and is serving as a prototype for future diagnostic technology. Dr. Marcu, a biomedical engineer specialized in optical spectroscopy and imaging, said a number of technological challenges are being addressed. “Most of the earlier investigations were done in my laboratory on the optical table,” she said. “Now we’re in a new stage in which we have put together optical instrumentation that can go onto a standard endoscopic cart in the operating room.”

Before fluorescence spectroscopy can become routine in the operating room, the equipment must be miniaturized and fine-tuned, and the information displayed must be simplified, said Dr. Marcu. “At present, we look at a computer screen that contains information about the tissue. But we hope to develop miniature systems that provide yes or no answers – perhaps a light that changes colors to show which tissue is healthy and which is diseased. It will recognize in real time the characteristics of the tissue.”

Cedars-Sinai’s Biophotonics Research Lab is affiliated with the Minimally Invasive Technologies Institute (MISTI) within the Department of Surgery. The MISTI brings together a scientific research group, a pre-clinical faculty and a clinical research team, all focusing on the development, testing and introduction of minimally invasive and noninvasive technologies into everyday surgical practice.

The fluorescence study was supported in part by the Whitaker Foundation.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.csmc.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>