Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising ’Remodeling’ Property of Gene Regulation Process

02.08.2004


Much like moving furniture around to create more space, cells dramatically rearrange their entire genome in order to allow the right genes to be turned on at the right time, new research at the University of North Carolina at Chapel Hill shows.

This extensive chromosomal "remodeling" is accomplished by moving DNA packaging structures called nucleosomes to different spots in the genome. Once a nucleosome is moved from a site, the appropriate gene then can be expressed much more efficiently.

The new findings appear online in the journal Nature Genetics. The study will be published in the August print edition.



The UNC researchers also discovered that when a gene needs to be turned off, the cell recruits the nucleosomes back to a particular location in the genome, thus helping to ensure that expression of the gene is stopped.

Nucleosomes are complexes of proteins that were thought to simply bind to genomic DNA and condense it into structures called chromatin that can fit inside a cell’s nucleus. It was historically assumed that nucleosomes were uniformly distributed throughout the genome and that this distribution was unchanging. The new study overturns this assumption, the UNC researchers said. "Except for at a few genes, it was traditionally thought that there was a monotonic organization of chromatin that did not vary throughout the genome," said senior author Dr. Jason Lieb, assistant professor of biology in UNC’s College of Arts and Sciences and a member of the Carolina Center for Genome Sciences. "But chromatin is a dynamic thing - much more dynamic than was once thought."

The study also suggested a new role for the nucleosome as a regulator of gene expression.

"We now know that nucleosomes mark territory," said co-author Dr. Brian Strahl, assistant professor of biochemistry and biophysics in UNC’s School of Medicine. "This chromosomal remodeling allows the work of gene expression to occur."

The study used the yeast genome as an experimental model to determine if chromosomal remodeling actually occurred. "The yeast genome is very simple compared to the human genome, but yeast are quite responsive to their environment," Lieb said.

By varying the food source given to the yeast, the authors demonstrated that the yeast genes required to process new nutrients lost their nucleosomes and were expressed.

They also showed that nucleosomes return to genes that need to be turned off when yeast are subjected to less than optimal growing conditions. This chromosomal remodeling discovered in yeast likely is directly translatable to the more complicated mammalian genome, the researchers said. "The entire machinery required to package DNA and express genes in yeast is very similar to that in humans," Lieb said. "Its application is likely the same in mammalian cells."

The study potentially paves the way for scientists to understand how chromosomal remodeling influences gene expression and regulation in human diseases such as cancer, Strahl said. "This is such a fundamental observation about the genome, but nobody had ever made it before," he added.

Support for the research came from the National Human Genome Research Institute and the National Institute of General Medical Sciences, components of the National Institutes of Health.

Co-authors with Lieb and Strahl are postdoctoral researchers Drs. Cheol-Koo Lee, department of biology; Yoichiro Shibata, biochemistry and biophysics; and Bhargavi Rao, Curriculum in Genetics and Microbiology.

| newswise
Further information:
http://www.unchealthcare.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>