Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The beak of the squid

30.07.2004


Researchers reveal Argonaute2 as the catalytic engine of mammalian RNA interference




RNA interference (RNAi) has emerged as a fundamentally important biological phenomenon and as a versatile, powerful tool for biomedical research. In organisms from fungi and flies to plants and mammals, RNAi plays a multifaceted role in molecular biology by silencing genes through chromatin remodeling, interfering with protein synthesis, and--in its best-studied mode of action--quashing gene expression by cleaving messenger RNA. Experimental applications of RNAi have spurred the exploration of gene function in many basic research, drug discovery, and clinical settings. Until now, however, the identity of the molecular scissors that carry out RNAi-mediated messenger RNA cleavage has not been revealed.

Two studies published this week in Science have resolved this mystery by establishing that Argonaute2, a signature protein component of the RNA interference machinery, provides the cutting action that carries out RNAi-mediated messenger RNA cleavage. The studies were conducted at Cold Spring Harbor Laboratory by research groups led by Greg Hannon and Leemor Joshua-Tor.


Hannon’s group focused on sorting out the functions of four mammalian Argonaute family members (Ago1, 2, 3, and 4). First, through a biochemical approach, Hannon and his colleagues found that only a single Argonaute family member, Ago2, supports the formation of mRNA cleavage-competent complexes in vitro.

To extend these biochemical findings to an in vivo setting, and to further explore the specialization of Argonaute family member function, Hannon’s group disrupted the mouse Ago2 gene by targeted insertional mutagenesis. The researchers observed an embryonic lethal phenotype and striking developmental abnormalities in Ago2 homozygotes.

All Ago2 homozygous embryos displayed defects in neural tube structure, with half of the embryos showing complete failure of neural tube closure in the head region. The embryos also had enlarged hearts and pronounced swelling of the pericardial cavity, and were severely developmentally delayed compared to their wild-type and heterozygous littermates. In contrast to the critical developmental role of Ago2 revealed by these findings, work by researchers elsewhere has shown that other Argonaute family members are dispensable for development.

Hannon and his colleagues reasoned that if Ago2 is uniquely capable of assembling into mRNA cleavage-competent complexes in vivo, then mouse cells lacking Ago2 but containing other Ago proteins should be incapable of carrying out experimentally-triggered, siRNA-mediated mRNA cleavage.

The researchers observed just such a result with Ago2-deficient mouse cells, and showed further that a plasmid encoding human Ago2 (but not Ago1) could restore siRNA-mediated mRNA cleavage to Ago2-deficient mouse cells.

Hannon’s study was consistent with the possibility that Argonaute2 provides the "Slicer" activity of RNAi-mediated mRNA cleavage. However, the possibility that a different protein provides Slicer activity could not be ruled out. Fortunately, Leemor Joshua-Tor’s group, also at Cold Spring Harbor Laboratory, was simultaneously conducting x-ray crystallographic studies of an Argonaute protein (PfAgo) from the hyperthermophilic archaebacterium, Pyrococcus furiosus.

When Joshua-Tor and her colleagues determined the crystal structure of PfAgo, they found that the PIWI domain of PfAgo belongs to the RNase H family of enzymes, whose members have RNA cleavage activity. This finding immediately implicated Argonaute itself as the protein that provides the Slicer activity of RNAi in mammals and other organisms.

Hannon and Joshua-Tor had previously shown that another domain of Argonaute proteins, the PAZ domain, recognizes the 3’ ends of siRNAs. That observation, combined with her group’s discovery that the PIWI domain of PfAgo belongs to the RNase H family, enabled Joshua-Tor to propose a model for siRNA-targeted mRNA cleavage by Argonaute (see figure).

Collectively, the two new studies establish that Argonaute2 is the catalytic engine of mammalian RNAi and provide a specific, structural mechanism for siRNA-targeted mRNA cleavage by Argonaute.

Given the role of RNA interference in a wide variety of biological processes and the intense interest in RNAi as a tool for both basic and applied research, the studies by Hannon and Joshua-Tor are a significant advance toward a comprehensive understanding of one of the most intriguing and far-reaching biological phenomena to be uncovered in recent years.

*The term "Argonaute" refers to the squid-like appearance of the leaves of Arabidopsis mutants lacking AGO1 gene function (Bohmert et al., 1998). See also the Greek myth Jason and the Argonauts and the squid, Argonauta argo.

Cold Spring Harbor Laboratory is a private, non-profit basic research and educational institution. Under the leadership of Dr. Bruce Stillman, a member of the National Academy of Sciences and a Fellow of the Royal Society (London), more than 350 scientists at the Laboratory conduct groundbreaking research in cancer, neurobiology, plant molecular genetics, genomics, and bioinformatics.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>