Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The beak of the squid


Researchers reveal Argonaute2 as the catalytic engine of mammalian RNA interference

RNA interference (RNAi) has emerged as a fundamentally important biological phenomenon and as a versatile, powerful tool for biomedical research. In organisms from fungi and flies to plants and mammals, RNAi plays a multifaceted role in molecular biology by silencing genes through chromatin remodeling, interfering with protein synthesis, and--in its best-studied mode of action--quashing gene expression by cleaving messenger RNA. Experimental applications of RNAi have spurred the exploration of gene function in many basic research, drug discovery, and clinical settings. Until now, however, the identity of the molecular scissors that carry out RNAi-mediated messenger RNA cleavage has not been revealed.

Two studies published this week in Science have resolved this mystery by establishing that Argonaute2, a signature protein component of the RNA interference machinery, provides the cutting action that carries out RNAi-mediated messenger RNA cleavage. The studies were conducted at Cold Spring Harbor Laboratory by research groups led by Greg Hannon and Leemor Joshua-Tor.

Hannon’s group focused on sorting out the functions of four mammalian Argonaute family members (Ago1, 2, 3, and 4). First, through a biochemical approach, Hannon and his colleagues found that only a single Argonaute family member, Ago2, supports the formation of mRNA cleavage-competent complexes in vitro.

To extend these biochemical findings to an in vivo setting, and to further explore the specialization of Argonaute family member function, Hannon’s group disrupted the mouse Ago2 gene by targeted insertional mutagenesis. The researchers observed an embryonic lethal phenotype and striking developmental abnormalities in Ago2 homozygotes.

All Ago2 homozygous embryos displayed defects in neural tube structure, with half of the embryos showing complete failure of neural tube closure in the head region. The embryos also had enlarged hearts and pronounced swelling of the pericardial cavity, and were severely developmentally delayed compared to their wild-type and heterozygous littermates. In contrast to the critical developmental role of Ago2 revealed by these findings, work by researchers elsewhere has shown that other Argonaute family members are dispensable for development.

Hannon and his colleagues reasoned that if Ago2 is uniquely capable of assembling into mRNA cleavage-competent complexes in vivo, then mouse cells lacking Ago2 but containing other Ago proteins should be incapable of carrying out experimentally-triggered, siRNA-mediated mRNA cleavage.

The researchers observed just such a result with Ago2-deficient mouse cells, and showed further that a plasmid encoding human Ago2 (but not Ago1) could restore siRNA-mediated mRNA cleavage to Ago2-deficient mouse cells.

Hannon’s study was consistent with the possibility that Argonaute2 provides the "Slicer" activity of RNAi-mediated mRNA cleavage. However, the possibility that a different protein provides Slicer activity could not be ruled out. Fortunately, Leemor Joshua-Tor’s group, also at Cold Spring Harbor Laboratory, was simultaneously conducting x-ray crystallographic studies of an Argonaute protein (PfAgo) from the hyperthermophilic archaebacterium, Pyrococcus furiosus.

When Joshua-Tor and her colleagues determined the crystal structure of PfAgo, they found that the PIWI domain of PfAgo belongs to the RNase H family of enzymes, whose members have RNA cleavage activity. This finding immediately implicated Argonaute itself as the protein that provides the Slicer activity of RNAi in mammals and other organisms.

Hannon and Joshua-Tor had previously shown that another domain of Argonaute proteins, the PAZ domain, recognizes the 3’ ends of siRNAs. That observation, combined with her group’s discovery that the PIWI domain of PfAgo belongs to the RNase H family, enabled Joshua-Tor to propose a model for siRNA-targeted mRNA cleavage by Argonaute (see figure).

Collectively, the two new studies establish that Argonaute2 is the catalytic engine of mammalian RNAi and provide a specific, structural mechanism for siRNA-targeted mRNA cleavage by Argonaute.

Given the role of RNA interference in a wide variety of biological processes and the intense interest in RNAi as a tool for both basic and applied research, the studies by Hannon and Joshua-Tor are a significant advance toward a comprehensive understanding of one of the most intriguing and far-reaching biological phenomena to be uncovered in recent years.

*The term "Argonaute" refers to the squid-like appearance of the leaves of Arabidopsis mutants lacking AGO1 gene function (Bohmert et al., 1998). See also the Greek myth Jason and the Argonauts and the squid, Argonauta argo.

Cold Spring Harbor Laboratory is a private, non-profit basic research and educational institution. Under the leadership of Dr. Bruce Stillman, a member of the National Academy of Sciences and a Fellow of the Royal Society (London), more than 350 scientists at the Laboratory conduct groundbreaking research in cancer, neurobiology, plant molecular genetics, genomics, and bioinformatics.

Peter Sherwood | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>