Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale carcass yields bone-devouring worms

30.07.2004


Scientists studying a whale carcass in Monterey Canyon recently announced the discovery of two new species of unique worms that feed on the bones of dead whales. In the July 30 issue of Science, the researchers describe these worms, whose bodies and feeding strategies differ from those of any other known animal. The worms have no eyes, legs, mouths, or stomachs, but they do have colorful feathery plumes and green "roots." They use the roots to infiltrate the bones of dead whales, digesting the fats and oils inside with the help of symbiotic bacteria. Marine biologist Greg Rouse, from the South Australian Museum, worked with scientists Shana Goffredi and Robert Vrijenhoek at the Monterey Bay Aquarium Research Institute (MBARI) to classify the new worms, placing them in a new genus called "Osedax," which is Latin for "bone devourer."



The most visible features of Osedax rubiplumus and Osedax frankpressi are their reddish feathery plumes, which extend into the water and act as gills. The plumes connect to a muscular trunk, which can be withdrawn into a transparent tube when the worms are disturbed. At the other end of the trunk, hidden inside the whale bone, the body widens to form a large egg sac. The greenish roots, branching off from the egg sac, are filled with bacteria that break down oil in the whale bones.

The scientists were initially puzzled by the fact that all the worms they collected were females. However, while examining the two- to seven-centimeter-long female worms under a microscope, they discovered that most females had dozens of microscopic male worms living within their bodies. These male worms looked as if they had never developed past their larval stage-their bodies still contained bits of yolk-but they also contained copious quantities of sperm.


The researchers also observed that female worms of all sizes were full of eggs, which led co-author Vrijenhoek to comment, "These worms appear to be the ecological equivalent of dandelions-a weedy species that grows rapidly, makes lots of eggs, and disperses far and wide." This strategy makes sense considering that these worms can only live on dead whales. After a whale skeleton has been consumed, all the worms at that site will die off. Before this happens, they must release enough eggs or larvae so that some tiny proportion will be transported by the ocean currents until they can find and colonize another whale carcass.

Rouse notes that, "Because of the highly unusual anatomy of the females, at first we were at a loss to know what type of animal Osedax was." But after examining key portions of the worms’ DNA, the researchers determined that the whale-fall worms are closely related to the large tube worms found at deep-sea hydrothermal vents and cold seeps. Both types of worms obtain nutrition with the help of symbiotic bacteria.

Further analysis of the DNA data yielded some surprising results. For example, after looking at the amount of variability in the worms’ mitochondrial DNA (which is assumed to change at a relatively constant rate over time) they concluded that the two new worm species’ most recent common ancestor lived roughly 42 million years ago, about the same time whales themselves first evolved. The worms’ genetic diversity also suggests that they are part of an actively breeding population that includes hundreds of thousands of individuals-a population that has presumably been hidden from human eyes in the vastness of the deep ocean. This further implies that, as Vrijenhoek put it, "there must be a lot of dead whales out there."

After studying the dead whale in Monterey Bay for over a year and half, Vrijenhoek and Goffredi have come to the conclusion that the two new worm species are but the tip of the iceberg (or perhaps the tip of the whale’s tail). Whale carcasses-or whale falls, as they are called-represent a massive input of food into the generally food-limited environment of the deep sea. One whale fall can provide as much organic material as thousands of years of marine snow, the organic debris that drifts down from surface waters to sustain life in the deep. Whale-fall specialist Craig Smith of the University of Hawaii has identified entire ecosystems with hundreds of different animals that have developed around a single whale fall. Some of these communities may be sustained for decades on the oil-saturated whale bones. The MBARI scientists will describe the unusual animal community at the Monterey Canyon whale fall in a paper to be published in the October 2004 issue of Deep Sea Research.

Like the animal communities around deep-sea hydrothermal vents, whale-fall communities evolve around highly localized, ephemeral sources of food. At hydrothermal vents, sulfides spewing from the vents are consumed by bacteria, which in turn provide nutrition for animals. Similar food webs and sulfide-dependent organisms have been observed at whale falls, where sulfides may be produced by bacterial decay of whale tissue. However, the symbiotic bacteria in Osedax spp. worms represent an entirely different evolutionary strategy-they break down whale-bone lipids (fats and oils) directly to provide food for the worms. This is the first time that a lipid-degrading bacteria has been observed in a symbiotic relationship. Co-author Goffredi has been studying this relationship and is currently preparing a separate paper on the topic.

Although whale falls have been studied at several sites along the California coast and elsewhere, the whale fall in Monterey Canyon is the deepest studied to date. Its great depth (2,891 meters) may explain why some of the animals at this site have never been seen before. In addition to the newly named species, the researchers collected between four and six additional unidentified worm-like animals from the whale carcass. While not as extraordinary as Osedax, these previously unknown animals underline the previously unimagined biodiversity and unique adaptations of organisms in the deep sea.

Kim Fulton-Bennett | MBARI News Release
Further information:
http://www.mbari.org

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>