Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale carcass yields bone-devouring worms

30.07.2004


Scientists studying a whale carcass in Monterey Canyon recently announced the discovery of two new species of unique worms that feed on the bones of dead whales. In the July 30 issue of Science, the researchers describe these worms, whose bodies and feeding strategies differ from those of any other known animal. The worms have no eyes, legs, mouths, or stomachs, but they do have colorful feathery plumes and green "roots." They use the roots to infiltrate the bones of dead whales, digesting the fats and oils inside with the help of symbiotic bacteria. Marine biologist Greg Rouse, from the South Australian Museum, worked with scientists Shana Goffredi and Robert Vrijenhoek at the Monterey Bay Aquarium Research Institute (MBARI) to classify the new worms, placing them in a new genus called "Osedax," which is Latin for "bone devourer."



The most visible features of Osedax rubiplumus and Osedax frankpressi are their reddish feathery plumes, which extend into the water and act as gills. The plumes connect to a muscular trunk, which can be withdrawn into a transparent tube when the worms are disturbed. At the other end of the trunk, hidden inside the whale bone, the body widens to form a large egg sac. The greenish roots, branching off from the egg sac, are filled with bacteria that break down oil in the whale bones.

The scientists were initially puzzled by the fact that all the worms they collected were females. However, while examining the two- to seven-centimeter-long female worms under a microscope, they discovered that most females had dozens of microscopic male worms living within their bodies. These male worms looked as if they had never developed past their larval stage-their bodies still contained bits of yolk-but they also contained copious quantities of sperm.


The researchers also observed that female worms of all sizes were full of eggs, which led co-author Vrijenhoek to comment, "These worms appear to be the ecological equivalent of dandelions-a weedy species that grows rapidly, makes lots of eggs, and disperses far and wide." This strategy makes sense considering that these worms can only live on dead whales. After a whale skeleton has been consumed, all the worms at that site will die off. Before this happens, they must release enough eggs or larvae so that some tiny proportion will be transported by the ocean currents until they can find and colonize another whale carcass.

Rouse notes that, "Because of the highly unusual anatomy of the females, at first we were at a loss to know what type of animal Osedax was." But after examining key portions of the worms’ DNA, the researchers determined that the whale-fall worms are closely related to the large tube worms found at deep-sea hydrothermal vents and cold seeps. Both types of worms obtain nutrition with the help of symbiotic bacteria.

Further analysis of the DNA data yielded some surprising results. For example, after looking at the amount of variability in the worms’ mitochondrial DNA (which is assumed to change at a relatively constant rate over time) they concluded that the two new worm species’ most recent common ancestor lived roughly 42 million years ago, about the same time whales themselves first evolved. The worms’ genetic diversity also suggests that they are part of an actively breeding population that includes hundreds of thousands of individuals-a population that has presumably been hidden from human eyes in the vastness of the deep ocean. This further implies that, as Vrijenhoek put it, "there must be a lot of dead whales out there."

After studying the dead whale in Monterey Bay for over a year and half, Vrijenhoek and Goffredi have come to the conclusion that the two new worm species are but the tip of the iceberg (or perhaps the tip of the whale’s tail). Whale carcasses-or whale falls, as they are called-represent a massive input of food into the generally food-limited environment of the deep sea. One whale fall can provide as much organic material as thousands of years of marine snow, the organic debris that drifts down from surface waters to sustain life in the deep. Whale-fall specialist Craig Smith of the University of Hawaii has identified entire ecosystems with hundreds of different animals that have developed around a single whale fall. Some of these communities may be sustained for decades on the oil-saturated whale bones. The MBARI scientists will describe the unusual animal community at the Monterey Canyon whale fall in a paper to be published in the October 2004 issue of Deep Sea Research.

Like the animal communities around deep-sea hydrothermal vents, whale-fall communities evolve around highly localized, ephemeral sources of food. At hydrothermal vents, sulfides spewing from the vents are consumed by bacteria, which in turn provide nutrition for animals. Similar food webs and sulfide-dependent organisms have been observed at whale falls, where sulfides may be produced by bacterial decay of whale tissue. However, the symbiotic bacteria in Osedax spp. worms represent an entirely different evolutionary strategy-they break down whale-bone lipids (fats and oils) directly to provide food for the worms. This is the first time that a lipid-degrading bacteria has been observed in a symbiotic relationship. Co-author Goffredi has been studying this relationship and is currently preparing a separate paper on the topic.

Although whale falls have been studied at several sites along the California coast and elsewhere, the whale fall in Monterey Canyon is the deepest studied to date. Its great depth (2,891 meters) may explain why some of the animals at this site have never been seen before. In addition to the newly named species, the researchers collected between four and six additional unidentified worm-like animals from the whale carcass. While not as extraordinary as Osedax, these previously unknown animals underline the previously unimagined biodiversity and unique adaptations of organisms in the deep sea.

Kim Fulton-Bennett | MBARI News Release
Further information:
http://www.mbari.org

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>