Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T research answers key question in biochemistry

29.07.2004


Characterize intermediates at atomic level



University of Toronto scientists are helping to answer one of the most important questions in biochemistry, one that has implications for treating neurodegenerative diseases: how do proteins fold into their three-dimensional structures?
In research published in the July 29 issue of Nature, U of T post-doctoral fellow Dmitry Korzhnev and his supervisor, Professor Lewis Kay of the Department of Biochemistry, become the first researchers to characterize at an atomic level of detail the intermediate -- or substructure -- that forms as a protein folds to its 3-D state.

"Understanding how proteins fold is one of the Holy Grails of biochemistry," says Kay. "The intermediates that we can study make up only one or two per cent of the population of protein molecules in solution. It’s hard to study them because they are present at such low levels. This is the first time we have been able to characterize an intermediate state at this level of detail."



Using nuclear magnetic resonance (NMR) spectroscopy, the researchers obtained data that allowed them to develop crude pictures of intermediate states for small, fairly simple proteins. They hope to refine their methods and apply them to other systems with intermediate states.

If scientists can understand the pathway a protein takes from one state to another, they may be able to predict protein structure, something that can’t be done very reliably at present. The ability to accurately predict protein structure has implications for drug design, as well as for improving commercial products.

Understanding the pathway a protein follows will also help scientists understand errors in folding, a problem linked to diseases such as cystic fibrosis and Alzheimer’s.

Lewis Kay | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>