Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Casanova or caveman: Scientists isolate nerve cells that choreograph male fly’s courtship behavior

29.07.2004


When a male fruit fly encounters a prospective mate, he initiates courtship by following her around and gently tapping her with his leg. If she seems interested, he serenades her with a love song. Singing is followed by more intimate acts that sometimes lead to successful mating.

Now Stanford University scientists have discovered that this elaborate courtship behavior is actually choreographed by a cluster of nerve cells embedded in the central nervous system of the male fly. When these cells fail to function properly, the courtship ritual breaks down and the male is transformed from a suave Casanova into a clumsy brute that tries to force himself on unwilling females.

These findings, published in the July 29 edition of the journal Nature, may eventually help scientists understand how the brain orchestrates sexual behavior in a variety of species - from flies to reptiles to humans, according to the researchers.



"The fruit fly is a model organism whose basic cellular functions are very similar to what they are in people," said Bruce S. Baker, the Dr. Morris Herzstein Professor in Biology at Stanford and co-author of the Nature study. "It wouldn’t surprise me to learn that human sexual behaviors also have underneath them a basic circuitry in the nervous system that mediates attraction and mating."

Casanova to caveman

In the Nature study, Baker and Stanford graduate student Devanand S. Manoli focused on a gene known as fruitless - one of approximately 13,000 genes in the DNA of the common fruit fly, Drosophila melanogaster.

Baker and several colleagues had previously discovered that fruitless was the master gene that controlled sexual behavior in male flies. "We found that the fruitless gene was responsible for building the neuronal circuitry for male courtship," Baker said. "This circuit, which is built into the fly’s brain and ventral nerve cord, is comprised of about 1,500 neurons - roughly one percent of the total number of nerve cells in a fruit fly."

In the Nature paper, Manoli and Baker showed that 60 of those cells carried out the crucial task of coordinating the steps of the courtship ritual. When those cells didn’t function properly, the male was unlikely to successfully mate, the researchers found.

"Drosophila male courtship is a complex, innate sequence of stereotyped behaviors that are programmed into the male during development," Baker explained. "The fly isn’t taught anything. In fact, he’s ready to mate 24 hours after he emerges from the pupa."

The courtship ritual consists of six steps carried out in a specific order. First, the male senses the presence of the female and follows her. Then he taps the female with his foreleg, which triggers pheromone cues. The male then extends a wing and vibrates it, producing a species-specific courtship song. The fourth step involves licking the female’s genitalia with his proboscis, followed by attempted copulation (step five) and copulation (step six).

"A normal male completes the first three steps in about two minutes," Baker said. "That’s followed by about two minutes of licking before he first attempts copulation." Copulation itself lasts another 20 minutes.

"But when we interfere with the functioning of those 60 nerve cells, the male essentially skips the tapping step and attempts to do everything else at once: He tries to copulate, lick her genitalia and play her a love song simultaneously. So what normally takes a total of four minutes is reduced to just 10 seconds - and that doesn’t work very well."

Reproductive failure

While some mating did occur during the experiment, the mutant males failed to achieve their ultimate goal - reproductive success.

"The mutants did copulate, but it never resulted in fertilization, because they would consistently mis-transfer their sperm and other seminal contents," Baker said. "It also took them longer to achieve copulation than normal males. That may well be because, for successful copulation, it’s female willingness that drives the whole thing. We can well assume that, when the mutant males behave in this way, they are doing things that the female does not find attractive."

Removing the network of nerve cells had other deleterious consequences, Baker noted.

"In normal courtship, to anthropomorphize it, the flies are polite," he said. "Normal males show what we refer to as ’deference’ - once one male starts courting a female, the other male leaves the couple alone for at least a while, postponing his own courtship. But what happens when we put several mutant males together with a female? All the males go after her at the same time."

As an example, Baker pointed to a videotape shot during the experiment in which a female fly is frantically pursued by a half-dozen out-of-control mutants.

"Our study shows that there is an identifiable set of cells, a place in the central nervous system, that serves to coordinate each of the subroutines that make up a behavior - licking, tapping and so forth," Baker said.

"There’s been some debate about whether the courtship ritual is really made up of subroutines or whether it’s one continuum," he added. "What we found is that while interfering with the neural network changes the sequence, the individual subroutines - such as licking and singing - are still there. This suggests very strongly that these subroutines are somehow built into the nervous system itself."

The evolution of courtship

"Another interesting suggestion from our work is that, while rapid mating and multiple male courtship are very abnormal for Drosophila, such behaviors are the norm in other insect species," Baker observed. "This raises the possibility that there is an ancestral neuronal circuit for courtship that’s common to many species, and that the very different courtship behaviors we see throughout the animal kingdom may have come about by relatively minor changes in this circuit."

Although a fruit fly is only a fraction of the size of a human being, Baker noted that both species are strikingly similar in their genetic makeup.

"The list is endless of the ways that people and flies are fundamentally similar," he explained. "For example, most major developmental genes that build the body plan and various organ systems are the same in people and flies."

Could the genes that control sexuality in flies also play a role in directing human sexuality?

"If you look at the basics of fly behavior, you find an innate ability to recognize somebody who is the right species and is the right sex," Baker said. "You tap them and get their attention, you play them a love song and so on. So the basic rudiments are pretty similar to what people do to get successful mating and produce an offspring.

"Of course, the actual way that’s manifested in humans - whether you go to a rock concert or to the opera - is entirely cultural and based on your upbringing. But a basic drive to reproduce and a basic reproductive strategy may be there. The tough job for geneticists is figuring out the pieces of the machinery that actually bring these behaviors about."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>