Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Casanova or caveman: Scientists isolate nerve cells that choreograph male fly’s courtship behavior

29.07.2004


When a male fruit fly encounters a prospective mate, he initiates courtship by following her around and gently tapping her with his leg. If she seems interested, he serenades her with a love song. Singing is followed by more intimate acts that sometimes lead to successful mating.

Now Stanford University scientists have discovered that this elaborate courtship behavior is actually choreographed by a cluster of nerve cells embedded in the central nervous system of the male fly. When these cells fail to function properly, the courtship ritual breaks down and the male is transformed from a suave Casanova into a clumsy brute that tries to force himself on unwilling females.

These findings, published in the July 29 edition of the journal Nature, may eventually help scientists understand how the brain orchestrates sexual behavior in a variety of species - from flies to reptiles to humans, according to the researchers.



"The fruit fly is a model organism whose basic cellular functions are very similar to what they are in people," said Bruce S. Baker, the Dr. Morris Herzstein Professor in Biology at Stanford and co-author of the Nature study. "It wouldn’t surprise me to learn that human sexual behaviors also have underneath them a basic circuitry in the nervous system that mediates attraction and mating."

Casanova to caveman

In the Nature study, Baker and Stanford graduate student Devanand S. Manoli focused on a gene known as fruitless - one of approximately 13,000 genes in the DNA of the common fruit fly, Drosophila melanogaster.

Baker and several colleagues had previously discovered that fruitless was the master gene that controlled sexual behavior in male flies. "We found that the fruitless gene was responsible for building the neuronal circuitry for male courtship," Baker said. "This circuit, which is built into the fly’s brain and ventral nerve cord, is comprised of about 1,500 neurons - roughly one percent of the total number of nerve cells in a fruit fly."

In the Nature paper, Manoli and Baker showed that 60 of those cells carried out the crucial task of coordinating the steps of the courtship ritual. When those cells didn’t function properly, the male was unlikely to successfully mate, the researchers found.

"Drosophila male courtship is a complex, innate sequence of stereotyped behaviors that are programmed into the male during development," Baker explained. "The fly isn’t taught anything. In fact, he’s ready to mate 24 hours after he emerges from the pupa."

The courtship ritual consists of six steps carried out in a specific order. First, the male senses the presence of the female and follows her. Then he taps the female with his foreleg, which triggers pheromone cues. The male then extends a wing and vibrates it, producing a species-specific courtship song. The fourth step involves licking the female’s genitalia with his proboscis, followed by attempted copulation (step five) and copulation (step six).

"A normal male completes the first three steps in about two minutes," Baker said. "That’s followed by about two minutes of licking before he first attempts copulation." Copulation itself lasts another 20 minutes.

"But when we interfere with the functioning of those 60 nerve cells, the male essentially skips the tapping step and attempts to do everything else at once: He tries to copulate, lick her genitalia and play her a love song simultaneously. So what normally takes a total of four minutes is reduced to just 10 seconds - and that doesn’t work very well."

Reproductive failure

While some mating did occur during the experiment, the mutant males failed to achieve their ultimate goal - reproductive success.

"The mutants did copulate, but it never resulted in fertilization, because they would consistently mis-transfer their sperm and other seminal contents," Baker said. "It also took them longer to achieve copulation than normal males. That may well be because, for successful copulation, it’s female willingness that drives the whole thing. We can well assume that, when the mutant males behave in this way, they are doing things that the female does not find attractive."

Removing the network of nerve cells had other deleterious consequences, Baker noted.

"In normal courtship, to anthropomorphize it, the flies are polite," he said. "Normal males show what we refer to as ’deference’ - once one male starts courting a female, the other male leaves the couple alone for at least a while, postponing his own courtship. But what happens when we put several mutant males together with a female? All the males go after her at the same time."

As an example, Baker pointed to a videotape shot during the experiment in which a female fly is frantically pursued by a half-dozen out-of-control mutants.

"Our study shows that there is an identifiable set of cells, a place in the central nervous system, that serves to coordinate each of the subroutines that make up a behavior - licking, tapping and so forth," Baker said.

"There’s been some debate about whether the courtship ritual is really made up of subroutines or whether it’s one continuum," he added. "What we found is that while interfering with the neural network changes the sequence, the individual subroutines - such as licking and singing - are still there. This suggests very strongly that these subroutines are somehow built into the nervous system itself."

The evolution of courtship

"Another interesting suggestion from our work is that, while rapid mating and multiple male courtship are very abnormal for Drosophila, such behaviors are the norm in other insect species," Baker observed. "This raises the possibility that there is an ancestral neuronal circuit for courtship that’s common to many species, and that the very different courtship behaviors we see throughout the animal kingdom may have come about by relatively minor changes in this circuit."

Although a fruit fly is only a fraction of the size of a human being, Baker noted that both species are strikingly similar in their genetic makeup.

"The list is endless of the ways that people and flies are fundamentally similar," he explained. "For example, most major developmental genes that build the body plan and various organ systems are the same in people and flies."

Could the genes that control sexuality in flies also play a role in directing human sexuality?

"If you look at the basics of fly behavior, you find an innate ability to recognize somebody who is the right species and is the right sex," Baker said. "You tap them and get their attention, you play them a love song and so on. So the basic rudiments are pretty similar to what people do to get successful mating and produce an offspring.

"Of course, the actual way that’s manifested in humans - whether you go to a rock concert or to the opera - is entirely cultural and based on your upbringing. But a basic drive to reproduce and a basic reproductive strategy may be there. The tough job for geneticists is figuring out the pieces of the machinery that actually bring these behaviors about."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>