Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LICR/UCSD team solves mystery of centromeres

29.07.2004


The genetic machinery for proper cell division



Researchers at the Ludwig Institute for Cancer Research at the University of California, San Diego (UCSD) School of Medicine have solved one of genetics’ mysteries – how a segment of protein on each of the body’s DNA-carrying chromosomes is able to form a rigid structure called a centromere, leading to proper cell division and the faithful inheritance of genes.

Published in the July 29, 2004 issue of the journal Nature, the study utilized a sophisticated new form of mass spectrometry developed at the UCSD School of Medicine to determine how a protein called CENP-A, turns the normally flexible center section of a rod-shaped chromosome into a steel-like structure called a centromere.


A crucial player in the complicated process of cell division, the centromere is responsible for moving the correct number of chromosomes into a new cell. Learning how a centromere forms is an important step in understanding what goes wrong in cell division. When either too many or too few chromosomes end up in newly formed cells, the catastrophic result is often birth defects, spontaneous abortion, or cancer. For example, Down syndrome is a disorder caused by one too many copies of chromosome 21.

During cell division, each cell makes a duplicate copy of its chromosomes. Each pair of identical chromosomes forms a centromere that holds them together in the center, like a cinched waist in an "X". From opposite poles of the cell, microtubules called spindle fibers, extend down to the centromeres and act as ropes to pull the centromere and paired chromosome apart, so that half the centromere/chromosome moves to one side of the cell, while the other half goes to the opposite pole. Cell division follows, resulting in two identical daughter cells.

"Ever since Mendel’s original genetic studies, we’ve wondered how it is that centromeres function to assure that chromosomes are faithfully inherited," said the study’s senior author, Don Cleveland, Ph.D., UCSD professor of medicine, neurosciences and cellular and molecular medicine, as well as a member of the Ludwig Institute for Cancer Research.

While many genes have similar DNA sequences in all organisms (yeast, flies, worms, mice, humans, etc.), researchers have determined that the DNA in centromeres varies markedly from species to species.

"It has been perplexing," Cleveland said. "Although the DNA sequence doesn’t matter, we’ve been able to show that a particular protein, CENP-A, determines where the centromere is located and copies this same location to a newly synthesized chromosome. The presence of CENP-A turns the centromere into a staff DNA and protein complex, and ensures that the centromere is maintained every time a cell duplicates. This is a critical component of the cellular machinery that provides every person on earth with a nearly identical set of chromosomes."

In the UCSD investigation, researchers made purified, synthetic copies of human CENP-A protein, which they studied in the laboratory. CENP-A, which binds only to centromeres, is a variation of the more common histone 3 (H3), a protein located throughout all regions of chromosomes.

The study’s first author, Ben E. Black, Ph.D., a post-doctoral fellow in Cleveland’s laboratory, was able to characterize the function of CENP-A with a UCSD School of Medicine invention called enhanced amide hydrogen/deuterium-exchange mass spectrometry, or DXMS*. This methodology, developed by Virgil L. Woods, Jr., M.D., associate professor of medicine and one of the paper’s corresponding authors, enables rapid analysis of protein structure and motion (dynamics) at the molecular level.

Black performed DXMS analysis of CENP-A in the Woods’ lab and identified a region of the protein that was much more rigid than similar regions of H3. He then genetically "transplanted" this small, stiff region of CENP-A into H3, and found that the "stiffened-up" H3 acted just like CENP-A, binding to centromeres.

"With DXMS, we were able to find the small region within CENP-A responsible for its ability to locate and then rigidify the centromere," Black said.

Cleveland added that "biologists have been able to take what are, in essence, snapshots of the structure of proteins for many years, but you couldn’t see whether regions of the protein were rigid or flexible. Now, with DXMS, we’re able to see something more like a movie that shows how flexible the regions of a protein are."

Woods noted that "this work demonstrates the ability of DXMS to precisely localize proteinfeatures responsible for function, even when the function is a very complex one – in this case, the initiation of centromere formation."

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>