Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LICR/UCSD team solves mystery of centromeres

29.07.2004


The genetic machinery for proper cell division



Researchers at the Ludwig Institute for Cancer Research at the University of California, San Diego (UCSD) School of Medicine have solved one of genetics’ mysteries – how a segment of protein on each of the body’s DNA-carrying chromosomes is able to form a rigid structure called a centromere, leading to proper cell division and the faithful inheritance of genes.

Published in the July 29, 2004 issue of the journal Nature, the study utilized a sophisticated new form of mass spectrometry developed at the UCSD School of Medicine to determine how a protein called CENP-A, turns the normally flexible center section of a rod-shaped chromosome into a steel-like structure called a centromere.


A crucial player in the complicated process of cell division, the centromere is responsible for moving the correct number of chromosomes into a new cell. Learning how a centromere forms is an important step in understanding what goes wrong in cell division. When either too many or too few chromosomes end up in newly formed cells, the catastrophic result is often birth defects, spontaneous abortion, or cancer. For example, Down syndrome is a disorder caused by one too many copies of chromosome 21.

During cell division, each cell makes a duplicate copy of its chromosomes. Each pair of identical chromosomes forms a centromere that holds them together in the center, like a cinched waist in an "X". From opposite poles of the cell, microtubules called spindle fibers, extend down to the centromeres and act as ropes to pull the centromere and paired chromosome apart, so that half the centromere/chromosome moves to one side of the cell, while the other half goes to the opposite pole. Cell division follows, resulting in two identical daughter cells.

"Ever since Mendel’s original genetic studies, we’ve wondered how it is that centromeres function to assure that chromosomes are faithfully inherited," said the study’s senior author, Don Cleveland, Ph.D., UCSD professor of medicine, neurosciences and cellular and molecular medicine, as well as a member of the Ludwig Institute for Cancer Research.

While many genes have similar DNA sequences in all organisms (yeast, flies, worms, mice, humans, etc.), researchers have determined that the DNA in centromeres varies markedly from species to species.

"It has been perplexing," Cleveland said. "Although the DNA sequence doesn’t matter, we’ve been able to show that a particular protein, CENP-A, determines where the centromere is located and copies this same location to a newly synthesized chromosome. The presence of CENP-A turns the centromere into a staff DNA and protein complex, and ensures that the centromere is maintained every time a cell duplicates. This is a critical component of the cellular machinery that provides every person on earth with a nearly identical set of chromosomes."

In the UCSD investigation, researchers made purified, synthetic copies of human CENP-A protein, which they studied in the laboratory. CENP-A, which binds only to centromeres, is a variation of the more common histone 3 (H3), a protein located throughout all regions of chromosomes.

The study’s first author, Ben E. Black, Ph.D., a post-doctoral fellow in Cleveland’s laboratory, was able to characterize the function of CENP-A with a UCSD School of Medicine invention called enhanced amide hydrogen/deuterium-exchange mass spectrometry, or DXMS*. This methodology, developed by Virgil L. Woods, Jr., M.D., associate professor of medicine and one of the paper’s corresponding authors, enables rapid analysis of protein structure and motion (dynamics) at the molecular level.

Black performed DXMS analysis of CENP-A in the Woods’ lab and identified a region of the protein that was much more rigid than similar regions of H3. He then genetically "transplanted" this small, stiff region of CENP-A into H3, and found that the "stiffened-up" H3 acted just like CENP-A, binding to centromeres.

"With DXMS, we were able to find the small region within CENP-A responsible for its ability to locate and then rigidify the centromere," Black said.

Cleveland added that "biologists have been able to take what are, in essence, snapshots of the structure of proteins for many years, but you couldn’t see whether regions of the protein were rigid or flexible. Now, with DXMS, we’re able to see something more like a movie that shows how flexible the regions of a protein are."

Woods noted that "this work demonstrates the ability of DXMS to precisely localize proteinfeatures responsible for function, even when the function is a very complex one – in this case, the initiation of centromere formation."

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>