Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LICR/UCSD team solves mystery of centromeres

29.07.2004


The genetic machinery for proper cell division



Researchers at the Ludwig Institute for Cancer Research at the University of California, San Diego (UCSD) School of Medicine have solved one of genetics’ mysteries – how a segment of protein on each of the body’s DNA-carrying chromosomes is able to form a rigid structure called a centromere, leading to proper cell division and the faithful inheritance of genes.

Published in the July 29, 2004 issue of the journal Nature, the study utilized a sophisticated new form of mass spectrometry developed at the UCSD School of Medicine to determine how a protein called CENP-A, turns the normally flexible center section of a rod-shaped chromosome into a steel-like structure called a centromere.


A crucial player in the complicated process of cell division, the centromere is responsible for moving the correct number of chromosomes into a new cell. Learning how a centromere forms is an important step in understanding what goes wrong in cell division. When either too many or too few chromosomes end up in newly formed cells, the catastrophic result is often birth defects, spontaneous abortion, or cancer. For example, Down syndrome is a disorder caused by one too many copies of chromosome 21.

During cell division, each cell makes a duplicate copy of its chromosomes. Each pair of identical chromosomes forms a centromere that holds them together in the center, like a cinched waist in an "X". From opposite poles of the cell, microtubules called spindle fibers, extend down to the centromeres and act as ropes to pull the centromere and paired chromosome apart, so that half the centromere/chromosome moves to one side of the cell, while the other half goes to the opposite pole. Cell division follows, resulting in two identical daughter cells.

"Ever since Mendel’s original genetic studies, we’ve wondered how it is that centromeres function to assure that chromosomes are faithfully inherited," said the study’s senior author, Don Cleveland, Ph.D., UCSD professor of medicine, neurosciences and cellular and molecular medicine, as well as a member of the Ludwig Institute for Cancer Research.

While many genes have similar DNA sequences in all organisms (yeast, flies, worms, mice, humans, etc.), researchers have determined that the DNA in centromeres varies markedly from species to species.

"It has been perplexing," Cleveland said. "Although the DNA sequence doesn’t matter, we’ve been able to show that a particular protein, CENP-A, determines where the centromere is located and copies this same location to a newly synthesized chromosome. The presence of CENP-A turns the centromere into a staff DNA and protein complex, and ensures that the centromere is maintained every time a cell duplicates. This is a critical component of the cellular machinery that provides every person on earth with a nearly identical set of chromosomes."

In the UCSD investigation, researchers made purified, synthetic copies of human CENP-A protein, which they studied in the laboratory. CENP-A, which binds only to centromeres, is a variation of the more common histone 3 (H3), a protein located throughout all regions of chromosomes.

The study’s first author, Ben E. Black, Ph.D., a post-doctoral fellow in Cleveland’s laboratory, was able to characterize the function of CENP-A with a UCSD School of Medicine invention called enhanced amide hydrogen/deuterium-exchange mass spectrometry, or DXMS*. This methodology, developed by Virgil L. Woods, Jr., M.D., associate professor of medicine and one of the paper’s corresponding authors, enables rapid analysis of protein structure and motion (dynamics) at the molecular level.

Black performed DXMS analysis of CENP-A in the Woods’ lab and identified a region of the protein that was much more rigid than similar regions of H3. He then genetically "transplanted" this small, stiff region of CENP-A into H3, and found that the "stiffened-up" H3 acted just like CENP-A, binding to centromeres.

"With DXMS, we were able to find the small region within CENP-A responsible for its ability to locate and then rigidify the centromere," Black said.

Cleveland added that "biologists have been able to take what are, in essence, snapshots of the structure of proteins for many years, but you couldn’t see whether regions of the protein were rigid or flexible. Now, with DXMS, we’re able to see something more like a movie that shows how flexible the regions of a protein are."

Woods noted that "this work demonstrates the ability of DXMS to precisely localize proteinfeatures responsible for function, even when the function is a very complex one – in this case, the initiation of centromere formation."

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>