Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LICR/UCSD team solves mystery of centromeres

29.07.2004


The genetic machinery for proper cell division



Researchers at the Ludwig Institute for Cancer Research at the University of California, San Diego (UCSD) School of Medicine have solved one of genetics’ mysteries – how a segment of protein on each of the body’s DNA-carrying chromosomes is able to form a rigid structure called a centromere, leading to proper cell division and the faithful inheritance of genes.

Published in the July 29, 2004 issue of the journal Nature, the study utilized a sophisticated new form of mass spectrometry developed at the UCSD School of Medicine to determine how a protein called CENP-A, turns the normally flexible center section of a rod-shaped chromosome into a steel-like structure called a centromere.


A crucial player in the complicated process of cell division, the centromere is responsible for moving the correct number of chromosomes into a new cell. Learning how a centromere forms is an important step in understanding what goes wrong in cell division. When either too many or too few chromosomes end up in newly formed cells, the catastrophic result is often birth defects, spontaneous abortion, or cancer. For example, Down syndrome is a disorder caused by one too many copies of chromosome 21.

During cell division, each cell makes a duplicate copy of its chromosomes. Each pair of identical chromosomes forms a centromere that holds them together in the center, like a cinched waist in an "X". From opposite poles of the cell, microtubules called spindle fibers, extend down to the centromeres and act as ropes to pull the centromere and paired chromosome apart, so that half the centromere/chromosome moves to one side of the cell, while the other half goes to the opposite pole. Cell division follows, resulting in two identical daughter cells.

"Ever since Mendel’s original genetic studies, we’ve wondered how it is that centromeres function to assure that chromosomes are faithfully inherited," said the study’s senior author, Don Cleveland, Ph.D., UCSD professor of medicine, neurosciences and cellular and molecular medicine, as well as a member of the Ludwig Institute for Cancer Research.

While many genes have similar DNA sequences in all organisms (yeast, flies, worms, mice, humans, etc.), researchers have determined that the DNA in centromeres varies markedly from species to species.

"It has been perplexing," Cleveland said. "Although the DNA sequence doesn’t matter, we’ve been able to show that a particular protein, CENP-A, determines where the centromere is located and copies this same location to a newly synthesized chromosome. The presence of CENP-A turns the centromere into a staff DNA and protein complex, and ensures that the centromere is maintained every time a cell duplicates. This is a critical component of the cellular machinery that provides every person on earth with a nearly identical set of chromosomes."

In the UCSD investigation, researchers made purified, synthetic copies of human CENP-A protein, which they studied in the laboratory. CENP-A, which binds only to centromeres, is a variation of the more common histone 3 (H3), a protein located throughout all regions of chromosomes.

The study’s first author, Ben E. Black, Ph.D., a post-doctoral fellow in Cleveland’s laboratory, was able to characterize the function of CENP-A with a UCSD School of Medicine invention called enhanced amide hydrogen/deuterium-exchange mass spectrometry, or DXMS*. This methodology, developed by Virgil L. Woods, Jr., M.D., associate professor of medicine and one of the paper’s corresponding authors, enables rapid analysis of protein structure and motion (dynamics) at the molecular level.

Black performed DXMS analysis of CENP-A in the Woods’ lab and identified a region of the protein that was much more rigid than similar regions of H3. He then genetically "transplanted" this small, stiff region of CENP-A into H3, and found that the "stiffened-up" H3 acted just like CENP-A, binding to centromeres.

"With DXMS, we were able to find the small region within CENP-A responsible for its ability to locate and then rigidify the centromere," Black said.

Cleveland added that "biologists have been able to take what are, in essence, snapshots of the structure of proteins for many years, but you couldn’t see whether regions of the protein were rigid or flexible. Now, with DXMS, we’re able to see something more like a movie that shows how flexible the regions of a protein are."

Woods noted that "this work demonstrates the ability of DXMS to precisely localize proteinfeatures responsible for function, even when the function is a very complex one – in this case, the initiation of centromere formation."

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>