Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists suggest framework for epigenetics in common disease


Scientists at Johns Hopkins are calling for simultaneous evaluation of both genetic and epigenetic information in the search to understand contributors to such common diseases as cancer, heart disease and diabetes. Writing in the August issue of Trends in Genetics, available now online, the scientists provide a framework for systematically incorporating epigenetic information into traditional genetic studies, something they say will be necessary to understand the genetic and environmental factors behind common diseases. "Epigenetics doesn’t underlie all human disease, but we definitely need to develop the technology to figure out when and where epigenetic changes do influence health and disease," says Andrew Feinberg, M.D., King Fahd Professor of Medicine.

Much as the genetic sequence is passed from parent to child, epigenetic "marks" that sit on our genes are also inherited. These "marks," usually small methyl groups, are attached to genes’ backbones and convey information, such as identifying which parent the gene came from. The marks also normally turn genes on or off. But just as changes in DNA sequences can cause diseases such as cancer, gain or loss of epigenetic marks can, too.

To date, only small, targeted regions of DNA have been analyzed for accompanying epigenetic marks. But the Hopkins researchers say now is the time to begin studying epigenetics on the same mammoth scale used to probe the sequence of creatures’ genetic building blocks.

But to establish what’s "normal," epigenetically speaking, for the entire genome, Feinberg says scientists will need new technologies to quickly, accurately and inexpensively determine which epigenetic marks are present and where they are, much as "high-throughput" technology revolutionized genetics.

"That kind of power is needed to create comprehensive epigenetic information, but right now the technology doesn’t exist," says Feinberg, who pioneered the study of epigenetics in cancer. "Developing that technology, and the necessary statistical approaches to analyze the data, will require a major collaborative effort and should be first on the to-do list."

A first step toward these goals is the new, multi-institutional Center for the Epigenetics of Common Human Disease, which Feinberg is directing. With a $5 million, five-year grant from the National Human Genome Research Institute and the National Institute of Mental Health, Center researchers will develop the tools they need and then begin systematically examining the epigenetics of autism and bipolar disorder. But a broader effort will be necessary, Feinberg says.

"Just as geneticists are probing samples to identify genotypes and haplotypes [lengthy genetic sequences that are inherited in blocks], we need to examine multiple samples from different tissues and different people to establish ’epigenotypes,’" says Feinberg. "Only by superimposing genetic and epigenetic information will we get a complete picture of how genes’ functions are affected in healthy people and in those with particular diseases."

Feinberg and co-authors Hans Bjornsson and epidemiologist Daniele Fallin say current attempts to establish genetic contributors to common diseases will fall short without equivalent epigenetic information.

It’s widely believed that common, complex diseases like cancer, diabetes and heart disease stem from collections of changes in a number of as-yet-unknown genes because of the wide variation in severity, age of onset, ease of treatment, rate of progression and other factors.

But the Hopkins scientists point out that epigenetic variation adds another layer of complexity that also could contribute broadly to diseases’ variability. How much epigenetic marks vary normally is still unknown, but faulty epigenetics are already known to be at work in cancer and relatively rare Beckwith-Wiedemann syndrome, among others conditions.

"The epigenetic marks a person has could influence disease directly, but they also could affect whether an underlying genetic mutation or genetic variation can actually result in biologic or physiologic changes," says Bjornsson, a physician from Iceland who is pursuing his Ph.D. in human genetics at Hopkins. "We think the latter is going to be very important in explaining the variability of the most common diseases."

For example, if a disease-causing mutation is present in a gene turned "off" by its epigenetic marks, then the mutation can’t cause disease. More subtly, alteration of epigenetic marks could "tune" gene expression to cause a full spectrum of effects. Epigenetic variation is also likely to help relate environment and age to disease incidence and risk, the researchers say.

"Common complex diseases occur more often as people age, and genetics alone hasn’t fully been able to account for that by accumulation of mutations," says Feinberg. "But epigenetic marks might more easily change as cells and people age or be more easily influenced by environmental factors than the actual DNA sequence is. We need to look at those possibilities."

The researchers were supported by grants from the National Human Genome Research Institute, the National Cancer Institute, and by a Fulbright Scholarship to Bjornsson.

Joanna Downer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>