Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Blueprint Created for Regulating Reproductive Technologies

28.07.2004


Reproductive technology is an issue that grows more complicated and more controversial each day. Some experts believe that imminent reproductive techniques, like human cloning and germ-line genetic engineering, pose the risk of injuries so frequent and so serious that they should be prohibited completely. Others believe this technology has endless medical possibilities and should be used to its fullest potential. A new book by a University of Missouri-Columbia researcher helps create a road map for determining when and how to regulate risky reproductive technologies on behalf of future children.



“The premise of this book is that the interests of future children are frequently misunderstood,” said Philip Peters, MU professor of law and director of the MU Biotechnology and Society Program. His book, How Safe is Safe Enough? Obligations to the Children of Reproductive Technology, was published recently by Oxford University Press. “Confusion arises because children who owe their lives to a life-inducing technology, yet are born with injuries, could not have been born without their injuries. For them, the only alternative to life with their injuries was never living at all. Daunted by this comparison, regulators rely instead on their untutored instincts or else leave the matter entirely to the fertility industry.”

In his book, Peters offers lawmakers a coherent and comprehensive framework for identifying the circumstances in which the use of a life-inducing procedure places the interests of the resulting child in jeopardy. Peters provides a plan for balancing those risks against the procreative liberty of prospective parents.


Peters proposes a case-by-case inquiry that takes into account the nature and magnitude of the proposed restrictions on procreative liberty, the risk of harm to future children and the context where the issue arises. He applies this framework to four past and future medical treatments: cloning, germ-line genetic engineering, fertility treatments that cause multiple pregnancies, and intracytoplasmic sperm injection, which involves retrieving an egg from a female and injecting it with one of the male’s sperm.

Peters criticizes the current lack of regulatory oversight and recommends both more extensive pre-market testing and closer post-market monitoring of new reproductive technologies. He believes that the absence of a comprehensive and coherent system in the United States for regulating either infertility clinics or infertility treatments poses a threat not only to the children who might owe their lives to these reproductive procedures, like cloning, but also to children who are conceived using more conventional infertility methods, like in vitro fertilization using multiple embryos.

The book acknowledges that expanded regulation of reproductive technology is likely to face a constitutional challenge and that access to some forms of assisted reproduction should be constitutionally protected. This, according to Peters, means that regulators must start with the assumption that prospective parents will make good choices once they are given adequate information.

“The first step toward better protection of these children has to be the gathering and sharing of better outcomes data,” Peters said. “If that does not suffice to reduce the overuse of unduly dangerous techniques, than in some instances more restrictive regulation may be needed. Legislatures can safely take the step only if the state has a coherent conception of the ways in which future people can be harmed, relies on credible evidence that a particular reproductive practice is likely to cause serious harm and enacts laws that are narrowly drafted to prevent the proven harm.”

| newswise
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>