Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Blueprint Created for Regulating Reproductive Technologies

28.07.2004


Reproductive technology is an issue that grows more complicated and more controversial each day. Some experts believe that imminent reproductive techniques, like human cloning and germ-line genetic engineering, pose the risk of injuries so frequent and so serious that they should be prohibited completely. Others believe this technology has endless medical possibilities and should be used to its fullest potential. A new book by a University of Missouri-Columbia researcher helps create a road map for determining when and how to regulate risky reproductive technologies on behalf of future children.



“The premise of this book is that the interests of future children are frequently misunderstood,” said Philip Peters, MU professor of law and director of the MU Biotechnology and Society Program. His book, How Safe is Safe Enough? Obligations to the Children of Reproductive Technology, was published recently by Oxford University Press. “Confusion arises because children who owe their lives to a life-inducing technology, yet are born with injuries, could not have been born without their injuries. For them, the only alternative to life with their injuries was never living at all. Daunted by this comparison, regulators rely instead on their untutored instincts or else leave the matter entirely to the fertility industry.”

In his book, Peters offers lawmakers a coherent and comprehensive framework for identifying the circumstances in which the use of a life-inducing procedure places the interests of the resulting child in jeopardy. Peters provides a plan for balancing those risks against the procreative liberty of prospective parents.


Peters proposes a case-by-case inquiry that takes into account the nature and magnitude of the proposed restrictions on procreative liberty, the risk of harm to future children and the context where the issue arises. He applies this framework to four past and future medical treatments: cloning, germ-line genetic engineering, fertility treatments that cause multiple pregnancies, and intracytoplasmic sperm injection, which involves retrieving an egg from a female and injecting it with one of the male’s sperm.

Peters criticizes the current lack of regulatory oversight and recommends both more extensive pre-market testing and closer post-market monitoring of new reproductive technologies. He believes that the absence of a comprehensive and coherent system in the United States for regulating either infertility clinics or infertility treatments poses a threat not only to the children who might owe their lives to these reproductive procedures, like cloning, but also to children who are conceived using more conventional infertility methods, like in vitro fertilization using multiple embryos.

The book acknowledges that expanded regulation of reproductive technology is likely to face a constitutional challenge and that access to some forms of assisted reproduction should be constitutionally protected. This, according to Peters, means that regulators must start with the assumption that prospective parents will make good choices once they are given adequate information.

“The first step toward better protection of these children has to be the gathering and sharing of better outcomes data,” Peters said. “If that does not suffice to reduce the overuse of unduly dangerous techniques, than in some instances more restrictive regulation may be needed. Legislatures can safely take the step only if the state has a coherent conception of the ways in which future people can be harmed, relies on credible evidence that a particular reproductive practice is likely to cause serious harm and enacts laws that are narrowly drafted to prevent the proven harm.”

| newswise
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>