Reproductive technology is an issue that grows more complicated and more controversial each day. Some experts believe that imminent reproductive techniques, like human cloning and germ-line genetic engineering, pose the risk of injuries so frequent and so serious that they should be prohibited completely. Others believe this technology has endless medical possibilities and should be used to its fullest potential. A new book by a University of Missouri-Columbia researcher helps create a road map for determining when and how to regulate risky reproductive technologies on behalf of future children.
“The premise of this book is that the interests of future children are frequently misunderstood,” said Philip Peters, MU professor of law and director of the MU Biotechnology and Society Program. His book, How Safe is Safe Enough? Obligations to the Children of Reproductive Technology, was published recently by Oxford University Press. “Confusion arises because children who owe their lives to a life-inducing technology, yet are born with injuries, could not have been born without their injuries. For them, the only alternative to life with their injuries was never living at all. Daunted by this comparison, regulators rely instead on their untutored instincts or else leave the matter entirely to the fertility industry.”
In his book, Peters offers lawmakers a coherent and comprehensive framework for identifying the circumstances in which the use of a life-inducing procedure places the interests of the resulting child in jeopardy. Peters provides a plan for balancing those risks against the procreative liberty of prospective parents.
| newswise
Further information:
http://www.missouri.edu
Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology
Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Information Technology
AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Earth Sciences
Complete skin regeneration system of fish unraveled
24.04.2018 | Life Sciences