Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location of potential familial lung cancer gene discovered

27.07.2004


Researchers have discovered a possible inherited component for lung cancer, a disease normally associated with external causes, such as cigarette smoking. An interdisciplinary consortium consisting of 12 research institutions and universities, including the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health (NIH), identified a major lung cancer susceptibility region on a segment of chromosome 6. The findings appear in a just-posted-online edition of American Journal of Human Genetics and will appear in print in the September 2004 issue.

The Genetic Epidemiology of Lung Cancer Consortium (GELCC) examined 52 families who had at least three first-degree family members affected by lung, throat, or laryngeal cancer. Of these 52 families, 36 had affected members in at least two generations. Using 392 known genetic markers, which are DNA sequences that are known to be common sites of genetic variation, the researchers generated and then compared the alleles (the different variations each gene can take) of all affected and non-affected family members who were willing to participate in the study.

The researchers found strong evidence that a lung cancer susceptibility gene or genes is co-inherited with a genetic marker on chromosome 6. Markers on chromosomes 12, 14, and 20 also indicated possible linkage to lung cancer susceptibility, although the results were not as strong. Identifying the locus was a critical first step, but more work needs to be done.



"The genetic markers are like those mileage markers you see on the side of the highway," explained NCI’s Jonathon Wiest, Ph.D. "They can be very useful for broad navigational purposes, but at the same time they don’t give you precise information about all the interesting things that may lie along the highway."

The next goal for these researchers is to more closely examine this region of chromosome 6 with the aim of locating the exact gene or genes that cause lung cancer susceptibility. The identified region corresponds to roughly a 20 million base pair segment on the long arm of chromosome 6. The region contains numerous genes that are likely candidates for the susceptibility gene, including four suspected tumor suppressor genes. However, Wiest pointed out that "often you can discover a new function for a gene that normally works in a different cellular pathway, so you never know what you’re going to find."

Another interesting discovery the team made involved the effects of smoking on cancer risk for carriers and non-carriers of the predicted familial lung cancer gene. They found that in non-carriers, the more they smoked, the greater their risk of cancer. In carriers, on the other hand, any amount of smoking increased lung cancer risk. These findings suggest that smoking even a small amount can lead to cancer for individuals with inherited susceptibility.

The researchers also plan to continue screening additional families who could have familial lung cancer, to confirm this particular susceptibility region, and perhaps find additional regions. "The discovery of genes for other types of cancer has led to better understanding of those diseases, which in turn can lead to better strategies for treatment and prevention. We hope that uncovering a gene or genes responsible for lung cancer will do the same for this devastating disease," said co-lead author Joan Bailey-Wilson, Ph.D., NHGRI.

Lung cancer is by far the leading cause of cancer death in the United States (over 160,000 deaths expected in 2004), and the five-year survival rate is only 15 percent. Such a high mortality, combined with the large amount of spontaneous lung cancers that arise from smoking, makes finding potential histories of familial lung cancer or collecting genetic samples extremely difficult and time consuming. "This study is just further proof of the importance of cooperative efforts and large-scale science in genetic epidemiology research," said Daniela Seminara, Ph.D., NCI.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>