Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location of potential familial lung cancer gene discovered

27.07.2004


Researchers have discovered a possible inherited component for lung cancer, a disease normally associated with external causes, such as cigarette smoking. An interdisciplinary consortium consisting of 12 research institutions and universities, including the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health (NIH), identified a major lung cancer susceptibility region on a segment of chromosome 6. The findings appear in a just-posted-online edition of American Journal of Human Genetics and will appear in print in the September 2004 issue.

The Genetic Epidemiology of Lung Cancer Consortium (GELCC) examined 52 families who had at least three first-degree family members affected by lung, throat, or laryngeal cancer. Of these 52 families, 36 had affected members in at least two generations. Using 392 known genetic markers, which are DNA sequences that are known to be common sites of genetic variation, the researchers generated and then compared the alleles (the different variations each gene can take) of all affected and non-affected family members who were willing to participate in the study.

The researchers found strong evidence that a lung cancer susceptibility gene or genes is co-inherited with a genetic marker on chromosome 6. Markers on chromosomes 12, 14, and 20 also indicated possible linkage to lung cancer susceptibility, although the results were not as strong. Identifying the locus was a critical first step, but more work needs to be done.



"The genetic markers are like those mileage markers you see on the side of the highway," explained NCI’s Jonathon Wiest, Ph.D. "They can be very useful for broad navigational purposes, but at the same time they don’t give you precise information about all the interesting things that may lie along the highway."

The next goal for these researchers is to more closely examine this region of chromosome 6 with the aim of locating the exact gene or genes that cause lung cancer susceptibility. The identified region corresponds to roughly a 20 million base pair segment on the long arm of chromosome 6. The region contains numerous genes that are likely candidates for the susceptibility gene, including four suspected tumor suppressor genes. However, Wiest pointed out that "often you can discover a new function for a gene that normally works in a different cellular pathway, so you never know what you’re going to find."

Another interesting discovery the team made involved the effects of smoking on cancer risk for carriers and non-carriers of the predicted familial lung cancer gene. They found that in non-carriers, the more they smoked, the greater their risk of cancer. In carriers, on the other hand, any amount of smoking increased lung cancer risk. These findings suggest that smoking even a small amount can lead to cancer for individuals with inherited susceptibility.

The researchers also plan to continue screening additional families who could have familial lung cancer, to confirm this particular susceptibility region, and perhaps find additional regions. "The discovery of genes for other types of cancer has led to better understanding of those diseases, which in turn can lead to better strategies for treatment and prevention. We hope that uncovering a gene or genes responsible for lung cancer will do the same for this devastating disease," said co-lead author Joan Bailey-Wilson, Ph.D., NHGRI.

Lung cancer is by far the leading cause of cancer death in the United States (over 160,000 deaths expected in 2004), and the five-year survival rate is only 15 percent. Such a high mortality, combined with the large amount of spontaneous lung cancers that arise from smoking, makes finding potential histories of familial lung cancer or collecting genetic samples extremely difficult and time consuming. "This study is just further proof of the importance of cooperative efforts and large-scale science in genetic epidemiology research," said Daniela Seminara, Ph.D., NCI.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Scientists initiate first ethical guidelines for organs cultivated in vitro
20.01.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Bodyguards in the gut have a chemical weapon
20.01.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>