Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location of potential familial lung cancer gene discovered

27.07.2004


Researchers have discovered a possible inherited component for lung cancer, a disease normally associated with external causes, such as cigarette smoking. An interdisciplinary consortium consisting of 12 research institutions and universities, including the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health (NIH), identified a major lung cancer susceptibility region on a segment of chromosome 6. The findings appear in a just-posted-online edition of American Journal of Human Genetics and will appear in print in the September 2004 issue.

The Genetic Epidemiology of Lung Cancer Consortium (GELCC) examined 52 families who had at least three first-degree family members affected by lung, throat, or laryngeal cancer. Of these 52 families, 36 had affected members in at least two generations. Using 392 known genetic markers, which are DNA sequences that are known to be common sites of genetic variation, the researchers generated and then compared the alleles (the different variations each gene can take) of all affected and non-affected family members who were willing to participate in the study.

The researchers found strong evidence that a lung cancer susceptibility gene or genes is co-inherited with a genetic marker on chromosome 6. Markers on chromosomes 12, 14, and 20 also indicated possible linkage to lung cancer susceptibility, although the results were not as strong. Identifying the locus was a critical first step, but more work needs to be done.



"The genetic markers are like those mileage markers you see on the side of the highway," explained NCI’s Jonathon Wiest, Ph.D. "They can be very useful for broad navigational purposes, but at the same time they don’t give you precise information about all the interesting things that may lie along the highway."

The next goal for these researchers is to more closely examine this region of chromosome 6 with the aim of locating the exact gene or genes that cause lung cancer susceptibility. The identified region corresponds to roughly a 20 million base pair segment on the long arm of chromosome 6. The region contains numerous genes that are likely candidates for the susceptibility gene, including four suspected tumor suppressor genes. However, Wiest pointed out that "often you can discover a new function for a gene that normally works in a different cellular pathway, so you never know what you’re going to find."

Another interesting discovery the team made involved the effects of smoking on cancer risk for carriers and non-carriers of the predicted familial lung cancer gene. They found that in non-carriers, the more they smoked, the greater their risk of cancer. In carriers, on the other hand, any amount of smoking increased lung cancer risk. These findings suggest that smoking even a small amount can lead to cancer for individuals with inherited susceptibility.

The researchers also plan to continue screening additional families who could have familial lung cancer, to confirm this particular susceptibility region, and perhaps find additional regions. "The discovery of genes for other types of cancer has led to better understanding of those diseases, which in turn can lead to better strategies for treatment and prevention. We hope that uncovering a gene or genes responsible for lung cancer will do the same for this devastating disease," said co-lead author Joan Bailey-Wilson, Ph.D., NHGRI.

Lung cancer is by far the leading cause of cancer death in the United States (over 160,000 deaths expected in 2004), and the five-year survival rate is only 15 percent. Such a high mortality, combined with the large amount of spontaneous lung cancers that arise from smoking, makes finding potential histories of familial lung cancer or collecting genetic samples extremely difficult and time consuming. "This study is just further proof of the importance of cooperative efforts and large-scale science in genetic epidemiology research," said Daniela Seminara, Ph.D., NCI.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>