Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location of potential familial lung cancer gene discovered

27.07.2004


Researchers have discovered a possible inherited component for lung cancer, a disease normally associated with external causes, such as cigarette smoking. An interdisciplinary consortium consisting of 12 research institutions and universities, including the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health (NIH), identified a major lung cancer susceptibility region on a segment of chromosome 6. The findings appear in a just-posted-online edition of American Journal of Human Genetics and will appear in print in the September 2004 issue.

The Genetic Epidemiology of Lung Cancer Consortium (GELCC) examined 52 families who had at least three first-degree family members affected by lung, throat, or laryngeal cancer. Of these 52 families, 36 had affected members in at least two generations. Using 392 known genetic markers, which are DNA sequences that are known to be common sites of genetic variation, the researchers generated and then compared the alleles (the different variations each gene can take) of all affected and non-affected family members who were willing to participate in the study.

The researchers found strong evidence that a lung cancer susceptibility gene or genes is co-inherited with a genetic marker on chromosome 6. Markers on chromosomes 12, 14, and 20 also indicated possible linkage to lung cancer susceptibility, although the results were not as strong. Identifying the locus was a critical first step, but more work needs to be done.



"The genetic markers are like those mileage markers you see on the side of the highway," explained NCI’s Jonathon Wiest, Ph.D. "They can be very useful for broad navigational purposes, but at the same time they don’t give you precise information about all the interesting things that may lie along the highway."

The next goal for these researchers is to more closely examine this region of chromosome 6 with the aim of locating the exact gene or genes that cause lung cancer susceptibility. The identified region corresponds to roughly a 20 million base pair segment on the long arm of chromosome 6. The region contains numerous genes that are likely candidates for the susceptibility gene, including four suspected tumor suppressor genes. However, Wiest pointed out that "often you can discover a new function for a gene that normally works in a different cellular pathway, so you never know what you’re going to find."

Another interesting discovery the team made involved the effects of smoking on cancer risk for carriers and non-carriers of the predicted familial lung cancer gene. They found that in non-carriers, the more they smoked, the greater their risk of cancer. In carriers, on the other hand, any amount of smoking increased lung cancer risk. These findings suggest that smoking even a small amount can lead to cancer for individuals with inherited susceptibility.

The researchers also plan to continue screening additional families who could have familial lung cancer, to confirm this particular susceptibility region, and perhaps find additional regions. "The discovery of genes for other types of cancer has led to better understanding of those diseases, which in turn can lead to better strategies for treatment and prevention. We hope that uncovering a gene or genes responsible for lung cancer will do the same for this devastating disease," said co-lead author Joan Bailey-Wilson, Ph.D., NHGRI.

Lung cancer is by far the leading cause of cancer death in the United States (over 160,000 deaths expected in 2004), and the five-year survival rate is only 15 percent. Such a high mortality, combined with the large amount of spontaneous lung cancers that arise from smoking, makes finding potential histories of familial lung cancer or collecting genetic samples extremely difficult and time consuming. "This study is just further proof of the importance of cooperative efforts and large-scale science in genetic epidemiology research," said Daniela Seminara, Ph.D., NCI.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>