Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New world record magnet for chemical and biomedical research

27.07.2004


The National High Magnetic Field Laboratory, funded by the National Science Foundation and the State of Florida, has achieved another world record in magnet development with the successful testing of its 21.1 Tesla, superconducting, ultra-wide bore, NMR magnet. The magnet reached full field on July 21, 2004, and will remain at field for years -- and even decades -- to come. A team of engineers headed by Denis Markiewicz, Tom Painter, Iain Dixon, and Jim Ferner at the NHMFL developed, designed, manufactured, and tested the magnet system. The product of this 13-year effort stands 16 feet tall, weighs over 30,000 pounds, and has a stored energy of 40 megajoules. No other magnet in the world can produce 21.1 Tesla for NMR and MRI science in a 105 mm warm bore.

NHMFL Director Greg Boebinger said, "This very powerful and ultra-wide bore magnet was an extremely challenging system to build, and it represents a significant engineering accomplishment. It is the crown jewel of the laboratory’s NMR spectroscopy and imaging program -- a joint effort between the National High Magnetic Field Laboratory in Tallahassee and in Gainesville." This accomplishment positions the NHMFL as an international leader in the development of high field superconducting magnet technology for magnetic resonance applications.

The magnet is a concentric assembly of ten superconducting coils connected in series and operated at 1.7 K (-456.6 Fahrenheit). Each coil is wound with a monolithic superconductor, composed of either niobium-tin (Nb3Sn) or niobium-titanium (NbTi) filaments in a copper matrix. To support the magnetic loading, the coils are configured with stainless steel overbanding and are vacuum impregnated with cryogenically tough epoxy for structural support. The high current density coils produce a uniform field of 21.1 Tesla to one part in one billion in a volume 64 times larger than that of typical NMR systems. Small adjustments to field homogeneity are achieved with a set of superconducting shim coils that fine tune the magnetic field. Fabrication of the NbTi and shim coils occurred in cooperation with an industrial partner, Intermagnetics General Corporation. The achievement of producing a uniform 21.1 Tesla field in a warm bore of 105 mm is attributed to the development of state-of-the-art magnet technology at the NHMFL and in collaboration with industry.



"We are extremely excited about the prospects of exploring new avenues in chemical and biomedical science with this one-of-a-kind magnet system that will have an operating frequency of 900 MHz for Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI)," stated NMR Director Tim Cross. The ultra-wide bore (105 mm) is the unique aspect of this magnet that will permit a much greater range of scientific experiments than would be possible in standard 52 mm bore magnets. Science performed on this unique national resource will range from materials research to macromolecular biological structure determination and non-invasive magnetic resonance imaging of laboratory animals. With this instrument, scientists from around the world as well as those at the NHMFL will be able to expand the horizons of scientific investigation with NMR and MRI technologies.

Tom Painter | EurekAlert!
Further information:
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>