Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells fill gap left by stroke

27.07.2004


A stroke leaves a permanent gap in the brain that can destroy a person’s ability to speak and move normally. Filling that gap with new cells has been a long sought-after goal of stem cell research, but all attempts have met with complications - until now. Researchers at Stanford University School of Medicine report the first success using stem cells to populate the damaged region with new neurons in rats. If those cells also replace the function of the lost cells, they could help people recover after a stroke.



In the study, published in the July 26 advance online issue of Proceedings of the National Academies of Science, neurosurgeon Gary Steinberg, MD, PhD, and his group found that fetal stem cells injected into the brains of rats could migrate to the right location and turn into the appropriate types of neurons. "We’re not saying we can treat patients immediately, but it’s a big step forward. This gives us considerable optimism for these cells," Steinberg said.

The cells in question are at an early stage of developing into the mature brain and are still able to form many types of brain cells, but until now the cells have shown that potential only in a lab dish. Stem Cells Inc., a company founded by study co-author and pathology professor Irving Weissman, MD, reported isolating these cells from human fetal tissue in December 2000. The company now grows the cells in bulk and distributes them to researchers studying spinal cord injuries as well as Parkinson’s, Alzheimer’s and other brain disorders. Steinberg’s is the first paper to show that the cells can transform into the appropriate cell types in an animal.


Steinberg said the fetal cells, called neurospheres, have advantages over both adult and embryonic stem cells for treating stroke. Adult brain stem cells produce new neurons throughout a person’s life. After a stroke, these cells seem to repair some damage but aren’t able to completely compensate for the lost tissue. In animal experiments, Steinberg’s group has found that additional adult neuronal stem cells injected into the brains of rats may not survive long or migrate to the correct location.

Human embryonic stem cells have a different set of problems. Although embryonic stem cells show promise for treating rats with strokes, the human cells aren’t widely available for research due to federal restrictions and aren’t approved for use in humans. Even if the cells effectively treated stroke damage in rats, Steinberg couldn’t offer that treatment to patients.

Fetal cells share the benefits of adult and embryonic cells without the drawbacks. This early study suggests that they will be more effective at treating stroke than adult cells. The cells are also available for research and are grown according to FDA-regulated Good Manufacturing Practice standards, unlike their human embryonic counterparts. This means the cells have already passed one FDA hurdle and could move to clinical trials in humans if Steinberg’s follow-up experiments are successful.

Steinberg warns that this study did not look at whether fetal neurospheres helped rats recover brain function after a stroke. Instead, he and co-first authors Tonya Bliss, PhD, a research associate, and Steven Kelly, PhD, now at the University of Bristol, wanted to determine whether the cells migrated to the right place and turned into the right kind of cell. When stem cells were injected close to the site of the induced stroke, the cells survived in only one out of nine mice. Steinberg said this makes sense because the stroke site doesn’t have a blood supply to keep the cells alive.

However, when injected a few millimeters away, the cells survived and migrated as far as 1.2 millimeters toward the stroke region. Steinberg believes signals from the damaged cells act as a distress call beckoning the transplanted cells. Other signals direct the newly arrived cells to transform into neurons and support cells called astrocytes. In rats without an induced stroke, the injected cells migrated only an average of 0.2 millimeters.

"The next step is to show recovery," Steinberg said. His group examined the transplanted cells after only four weeks, too soon to know whether the cells can help the rats recover. In the next set of experiments they will study whether the neurospheres help the rats recover normal movement after the stroke.

Michael Marks, MD, associate professor of radiology and a faculty member at the Stanford Stroke Center, said he is encouraged by Steinberg’s findings. Marks said there is currently no way to treat patients who have lost brain function after a stroke. "This would be a very important therapeutic tool for us to have," he said, adding that existing treatments are only effective in the first few hours after the stroke. Most patients don’t arrive at the hospital within that window and therefore have no options for reducing damage to their brain cells. "A therapy like this has tremendous potential," he said.

Every 45 seconds an American has a stroke, for a total of about 700,000 strokes per year. It is the leading cause of serious, long-term disability in the United States. Most strokes are caused by blood clots blocking vessels in the brain, cutting off the supply of oxygen and nutrients to brain cells. The remaining 12 percent of strokes occur when blood vessels burst and leak blood into the brain. Strokes are the third most common cause of death after heart disease and cancer.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>