Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reaches muscles throughout the body and reverses muscular dystrophy in animal model

26.07.2004


The gene therapy was able to perform in all muscles in the mouse, and would not necessarily have to carry the dystrophy gene



Researchers have found a delivery method for gene therapy that reaches all the voluntary muscles of a mouse – including heart, diaphragm and limbs – and reverses the process of muscle-wasting found in muscular dystrophy.

"We have a clear ’proof of principle’ that it is possible to deliver new genes body-wide to all the striated muscles of an adult animal. Finding a delivery method for the whole body has been a major obstacle limiting the development of gene therapy for the muscular dystrophies. Our new work identifies for the first time a method where a new dystrophin gene can be delivered, using a safe and simple method, to all of the affected muscles of a mouse with muscular dystrophy," said Dr. Jeffrey S. Chamberlain, professor of neurology and director of the Muscular Dystrophy Cooperative Research Center at the University of Washington School of Medicine in Seattle. He also has joint appointments in the departments of medicine and biochemistry.


Chamberlain is the senior author of the paper describing the results, which will be published in the August edition of Nature Medicine. The paper describes a type of viral vector, a specific type of an adeno-associated virus (AAV), which is able to ’home-in’ on muscle cells and does not trigger an immune system response. The delivery system also includes use of a growth factor, VEGF, that appears to increase penetration into muscles of the gene therapy agent. Chamberlain said the formula was the result of about a year of trying different methods.

Duchenne muscular dystrophy is an X-linked genetic disorder that strikes one of every 3,500 newborn boys. The genetic disorder eliminates production of the dystrophin protein, which is necessary for the structural support of muscle. Without this protein, muscles weaken to the point where the victim cannot survive.

"By giving one single injection of this AAV vector carrying a mini-dystrophin gene into the bloodstream, we are able to deliver therapeutic levels of dystrophin to every skeletal and cardiac muscle of an adult, dystrophic mouse," Chamberlain said. "These muscles include the heart, the muscles used during breathing, and all the limb muscles. The mice show a whole body effect, with a dramatic improvement of their dystrophy."

The findings hint that it may be possible someday to introduce other genes into adult muscle to address conditions besides muscular dystrophy. The gene therapy developed at the UW was able to perform in all muscles in the mouse, and would not necessarily have to carry the dystrophy gene. Muscle represents about 40 percent of the human body, and there are a number of ailments that involve muscle. Gene therapy could someday reinforce muscles weakened by cancer or normal aging, or treat cardiac disease. But Chamberlain stressed that the paper represents one discovery on the long path to any clinical applications in people.

The results involved mice, so researchers do not know if the method will work in larger animals or people. Chamberlain and colleagues in the Muscular Dystrophy Cooperative Research Center are gathering data to seek regulatory approval for a limited trial in humans to determine the safety of a very small amount of the vector in human muscle. If the experiments take place — and if results are encouraging — researchers would continue to test the method in larger animals and hopefully eventually humans. But Chamberlain stressed that there are a number of scientific challenges and regulatory requirements along the way, so any tests on humans are many years in the future.

Walter Neary | EurekAlert!
Further information:
http://www.u.washington.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>