Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Briggs takes to the molecular level Darwin’s findings on plants sensing the direction of light

26.07.2004


US National Academy of Sciences member and Stanford Professor Winslow R. Briggs will speak at the American Society of Plant Biologists (ASPB) annual meeting July 24, 2004 in Orlando, Florida about findings in his studies of how plants sense the direction of light.



Most casual observers have likely noticed that seedlings on a windowsill will grow toward the light. This phenomenon, known as phototropism, is a manifestation of a sensitive system plants have for detecting light. This light sensing system guides seedlings through the soil and has profound influences on their development during the critical stage of seedling establishment and later as the leaves adapt to changes in the light environment.

Briggs’s research group has discovered the two-member family of protein molecules that serves as the detector and decoder of the blue photons on which the seedling cues to determine the direction of light. The molecule, known as phototropin, is now being intensively studied because of its unique properties by chemists and biophysicists as well as plant biologists.


Professor Briggs began experimenting on how plants detect the direction and intensity of light in the 1950’s, but he certainly was not the first to be drawn to this fascinating example of sensory biology. For example, Charles Darwin and his son were drawn to the phenomenon and performed some classic experiments that paved the way for further studies, including Briggs’ successful approaches. The Darwins could not have imagined that the topic would in the 21st century be studied at the molecular level as it is now.

Professor Briggs will present his group’s latest findings on the topic at the ASPB Annual meeting during the Major Symposium on Tropisms 4 p.m. to 6:30 p.m. Saturday, July 24, 2004 in Coronado Ballrooms L-T at Disney’s Coronado Springs Resort & Convention Center.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>