Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientists visualize details of how hepatitis C unwinds RNA

26.07.2004


Research led by Anna Marie Pyle, professor of molecular biophysics and biochemistry at Yale University reveals how a protein from Hepatitis C (HCV) unwinds RNA, potentially allowing it to be copied.



The work published in the journal Nature focuses on an enzyme, helicase NS3, that unwinds the RNA virus for replication inside cells. NS3 is one member of an extensive family of helicases and is used as a model for studying unwinding activities of motor proteins.

Their findings are particularly important because NS3 is a major drug target against HCV and understanding the helicase function will aid in the development of HCV inhibitors.


Pyle’s results contradict the idea that helicases move smoothly with the continuous action of a snow plow. Instead, NS3 moves with a discontinuous stepping motion that alternates rapid translocation with pausing. "We observe that the helicase proceeds through discreet spatial and kinetic microstates," Pyle said. "We actually track the speed and processivity of the helicase as it passes through each base pair of its substrate."

"While this report is the first of its kind, and has produced highly significant results, it is only the beginning of a new understanding in HCV enzymology," said Pyle. "In the future, our approaches will be used to understand the composition of the HCV replication complex and the interplay between its constituent proteins. Comparative studies will be done on other viruses and in other systems where helicase function is critical."

These novel features were revealed using a new type of combinatorial enzymology that allows the behavior of helicase enzymes to be directly compared on a sequence panel. This is the first time that the behavior of a nucleic acid remodeling protein has been monitored at this high resolution, as it acts upon or passes each subunit of its target, according to Pyle. Since the work was conducted on RNA, it helps to bring RNA helicases to the forefront of motor research.

"By visualizing one of the key steps in how hepatitis C makes copies of itself, Dr. Pyle unexpectedly discovered that the molecular motor that unzips the virus’ genetic material looks a lot like the motor that drives muscles," said Dr. Richard Ikeda, a chemist at the National Institute of General Medical Sciences, which funded the work. "This is a perfect example of how a basic investigation revealed surprise insights into the similarities among widely different organisms.’

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>