Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists pinpoint molecules that generate synapses

26.07.2004


Researchers have found a family of molecules that play a key role in the formation of synapses, the junctions that link brain cells, called neurons, to each other. The molecules initiate the development of these connections, forming the circuitry of the mammalian nervous system.

Scientists from Harvard University and Washington University in St. Louis describe the findings in the July 23 issue of the journal Cell.

"This is very basic work, far from any clinical applications at this point," says author Joshua R. Sanes, professor of molecular and cellular biology in Harvard’s Faculty of Arts and Sciences. "Still, one can think of lots of cases, from normal aging to mental retardation to neurodegenerative disease, where making more synapses or preventing synapse loss might be beneficial. This finding may eventually point the way to new therapies."



The work, using mice as a model, was conducted while Sanes and co-author Hisashi Umemori were at Washington University.

Synapses are the sites where neurons communicate with each other to form the large and complex information-processing networks of the brain. These networks are highly modifiable because the synapses between neurons are plastic, leading to changes that underlie learning. Synapses are also the targets of nearly all psychoactive drugs, including both prescription medications and illicit drugs.

"We knew that the apparatus for sending and receiving chemical and electrical signals was concentrated at the synapses where neurons connect with each other," Sanes says. "We wanted to determine how these special sites form."

As the early nervous system develops into a dense tangle of neurons, synapses sprout at places where neurons grow close to one another. In order for a synapse to actually form, Sanes and Umemori believed, certain key molecules would have to flow across the gap between two neurons to commence development of a synapse linking them.

Umemori spent several years scanning neurons in culture for these pioneering molecules that set in motion the linking of neural networks. In the end he fingered a molecule called FGF22, along with several of its close relatives, as key to setting in motion the construction of synapses. Umemori confirmed FGF22’s role by showing that mice in which FGF22 was inactivated failed to grow synapses; conversely, when added to neurons in culture, the molecule stimulates synapse formation.

Sanes and Umemori determined that FGF22 works to build synapses in the brain’s cerebellum, a critical center for motor control; it’s unclear whether it also serves as a signal to foster synapse growth between neurons in other areas. Two other members of the FGF family, FGF7 and FGF10, are very similar in structure, and may play similar roles in other areas of the nervous system.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>