Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists pinpoint molecules that generate synapses

26.07.2004


Researchers have found a family of molecules that play a key role in the formation of synapses, the junctions that link brain cells, called neurons, to each other. The molecules initiate the development of these connections, forming the circuitry of the mammalian nervous system.

Scientists from Harvard University and Washington University in St. Louis describe the findings in the July 23 issue of the journal Cell.

"This is very basic work, far from any clinical applications at this point," says author Joshua R. Sanes, professor of molecular and cellular biology in Harvard’s Faculty of Arts and Sciences. "Still, one can think of lots of cases, from normal aging to mental retardation to neurodegenerative disease, where making more synapses or preventing synapse loss might be beneficial. This finding may eventually point the way to new therapies."



The work, using mice as a model, was conducted while Sanes and co-author Hisashi Umemori were at Washington University.

Synapses are the sites where neurons communicate with each other to form the large and complex information-processing networks of the brain. These networks are highly modifiable because the synapses between neurons are plastic, leading to changes that underlie learning. Synapses are also the targets of nearly all psychoactive drugs, including both prescription medications and illicit drugs.

"We knew that the apparatus for sending and receiving chemical and electrical signals was concentrated at the synapses where neurons connect with each other," Sanes says. "We wanted to determine how these special sites form."

As the early nervous system develops into a dense tangle of neurons, synapses sprout at places where neurons grow close to one another. In order for a synapse to actually form, Sanes and Umemori believed, certain key molecules would have to flow across the gap between two neurons to commence development of a synapse linking them.

Umemori spent several years scanning neurons in culture for these pioneering molecules that set in motion the linking of neural networks. In the end he fingered a molecule called FGF22, along with several of its close relatives, as key to setting in motion the construction of synapses. Umemori confirmed FGF22’s role by showing that mice in which FGF22 was inactivated failed to grow synapses; conversely, when added to neurons in culture, the molecule stimulates synapse formation.

Sanes and Umemori determined that FGF22 works to build synapses in the brain’s cerebellum, a critical center for motor control; it’s unclear whether it also serves as a signal to foster synapse growth between neurons in other areas. Two other members of the FGF family, FGF7 and FGF10, are very similar in structure, and may play similar roles in other areas of the nervous system.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>