Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone, enamel, dentine, milk & saliva share gene family

26.07.2004


Fish and mammal teeth are not created equal. Sometime after the move from spineless to having a backbone, the family of genes that controls tissue mineralization evolved to produce mammalian tooth enamel, bones and dentine, but fish enameloid developed from different genes, according to Penn State researchers.



"We also suggest that mammalian enamel is distinct from fish enameloid," the researchers reported in this week’s online edition of the Proceedings of the National Academy of Sciences. "The similar nature as a hard structural overlay on exoskeleton and teeth is because of convergent evolution." The researchers include Dr. Kazuhiko Kawasaki, senior research associate and Dr. Kenneth W. Weiss, the Evan Pugh Professor of biological anthropology and genetics, Penn State and Tohru Suzuki, professor of agricultural science, Tohoku University, Japan.

While similar structures and traits are often similar because they come from the same genetic basis, it is not unusual to have physical traits that look alike and serve the same purpose, developed from completely unrelated genes.


The genes responsible for bones, enamel, dentine, milk and saliva in most vertebrates belong to the same family; that is, they descend from a common ancestral gene, and for the most part, reside on the same chromosome. These genes are all responsible for calcium binding; whether it is the growth of bone on cartilage, tooth components like enamel and dentine, or production of calcium rich milk and saliva. However, all calcium-binding genes do not exist in all vertebrates.

"Birds have a gene to make hard egg shells, but they do not have genes for making tooth components," says Kawasaki. "Birds probably lost the enamel gene so long ago that there would be no trace of it."

The researchers have traced the development of these calcium-binding genes to a gene, SPARC, that existed before the split occurred between invertebrates and vertebrates during the Precambrian, 500 to 600 million years ago. Sometime after vertebrates arose, a gene called SPARCL1, or SPARC-like 1, developed and this gene is the ancestor of the family of genes that produce the wide variety of mineralized tissues.

Gene families develop because of tandem gene duplication, which occurs when two copies of one gene are copied onto a new chromosome. This error in duplication allows changes to occur in one copy of the gene, while the other copy remains unchanged and preserves the gene’s original function. Over time, the individual gene function slowly diverges.

"In any species, some of the duplicate genes could be incomplete or nonfunctional," says Kawasaki. "Others may be become specialized genes coding for things that exist in other vertebrates such as eggshell."

Penn State researchers were originally looking in this chromosome region for a genetic explanation of baboon tooth shape, where they found a series of genes with similar structures, but that all were involved in calcium binding.

Kawasaki used existing data on humans, mice, chicken and zebra fish along with data collected from the DNA of fugu or puffer fish to investigate this chromosome region.

"We also used our original fugu fish data to confirm that the databases were giving us the correct results," says Kawasaki.

The researchers used messenger RNA, the substance that contains the information for producing proteins to reverse engineer DNA that codes for these proteins. This copy DNA can be used to locate the original gene on the chromosome. Except for one of the three genes that codes for mammalian tooth enamel, all the other genes are found in the same area of the same gene. One of the enamel genes, AMEL, is found on the X and Y chromosomes in humans.

The gene that codes for fish enameloid however, is not related to this gene family and is not found on the same gene.

"Muscles, guts, nerves exist in both invertebrates and vertebrates," says Weiss. "But mineralized tissues such as bones, enamel and dentine are what make vertebrates different."

The split between invertebrates and vertebrates occurs during a time when there is a very spotty fossil record. Most estimates of the timing are done by molecular clock calculations.

The appearance of these mineral tissue genes after the split can shed light on the murky period when creatures developed backbones for internal support, sharp teeth for eating and protection, hard shells to protect developing young and milk to nurture them until they could use their teeth to catch and consume dinner.

"Now we are going to look to see if these genes are expressed in embryos when and where they are supposed to be expressed," says Weiss.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>