Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone, enamel, dentine, milk & saliva share gene family

26.07.2004


Fish and mammal teeth are not created equal. Sometime after the move from spineless to having a backbone, the family of genes that controls tissue mineralization evolved to produce mammalian tooth enamel, bones and dentine, but fish enameloid developed from different genes, according to Penn State researchers.



"We also suggest that mammalian enamel is distinct from fish enameloid," the researchers reported in this week’s online edition of the Proceedings of the National Academy of Sciences. "The similar nature as a hard structural overlay on exoskeleton and teeth is because of convergent evolution." The researchers include Dr. Kazuhiko Kawasaki, senior research associate and Dr. Kenneth W. Weiss, the Evan Pugh Professor of biological anthropology and genetics, Penn State and Tohru Suzuki, professor of agricultural science, Tohoku University, Japan.

While similar structures and traits are often similar because they come from the same genetic basis, it is not unusual to have physical traits that look alike and serve the same purpose, developed from completely unrelated genes.


The genes responsible for bones, enamel, dentine, milk and saliva in most vertebrates belong to the same family; that is, they descend from a common ancestral gene, and for the most part, reside on the same chromosome. These genes are all responsible for calcium binding; whether it is the growth of bone on cartilage, tooth components like enamel and dentine, or production of calcium rich milk and saliva. However, all calcium-binding genes do not exist in all vertebrates.

"Birds have a gene to make hard egg shells, but they do not have genes for making tooth components," says Kawasaki. "Birds probably lost the enamel gene so long ago that there would be no trace of it."

The researchers have traced the development of these calcium-binding genes to a gene, SPARC, that existed before the split occurred between invertebrates and vertebrates during the Precambrian, 500 to 600 million years ago. Sometime after vertebrates arose, a gene called SPARCL1, or SPARC-like 1, developed and this gene is the ancestor of the family of genes that produce the wide variety of mineralized tissues.

Gene families develop because of tandem gene duplication, which occurs when two copies of one gene are copied onto a new chromosome. This error in duplication allows changes to occur in one copy of the gene, while the other copy remains unchanged and preserves the gene’s original function. Over time, the individual gene function slowly diverges.

"In any species, some of the duplicate genes could be incomplete or nonfunctional," says Kawasaki. "Others may be become specialized genes coding for things that exist in other vertebrates such as eggshell."

Penn State researchers were originally looking in this chromosome region for a genetic explanation of baboon tooth shape, where they found a series of genes with similar structures, but that all were involved in calcium binding.

Kawasaki used existing data on humans, mice, chicken and zebra fish along with data collected from the DNA of fugu or puffer fish to investigate this chromosome region.

"We also used our original fugu fish data to confirm that the databases were giving us the correct results," says Kawasaki.

The researchers used messenger RNA, the substance that contains the information for producing proteins to reverse engineer DNA that codes for these proteins. This copy DNA can be used to locate the original gene on the chromosome. Except for one of the three genes that codes for mammalian tooth enamel, all the other genes are found in the same area of the same gene. One of the enamel genes, AMEL, is found on the X and Y chromosomes in humans.

The gene that codes for fish enameloid however, is not related to this gene family and is not found on the same gene.

"Muscles, guts, nerves exist in both invertebrates and vertebrates," says Weiss. "But mineralized tissues such as bones, enamel and dentine are what make vertebrates different."

The split between invertebrates and vertebrates occurs during a time when there is a very spotty fossil record. Most estimates of the timing are done by molecular clock calculations.

The appearance of these mineral tissue genes after the split can shed light on the murky period when creatures developed backbones for internal support, sharp teeth for eating and protection, hard shells to protect developing young and milk to nurture them until they could use their teeth to catch and consume dinner.

"Now we are going to look to see if these genes are expressed in embryos when and where they are supposed to be expressed," says Weiss.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>