Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos, Twist Maps and Big Business

26.07.2004


Obscure mathematical ideas developed back in the 1980s could solve current problems of mixing fluids at the microscale, and revolutionise the technology, reports an article in Science.

The need to mix fluids at the microscale affects a whole range of developing technologies – from inkjet printers to DNA analysis – and finding ways to do it is becoming big business. Millions of dollars have already been poured into ‘lab-on-a-chip’ projects, but making miniature labs is not just a question of scaling things down.

When you pour cream into your coffee via the back of a spoon, it forms a delicious layer on the top, through which you sip your coffee. Should you want to mix the layers together, however, you simply pick up the spoon and stir, creating turbulence in the fluids that causes them to mix.



But it’s a different story when the amount of fluids you are trying to mix is very, very small. Tiny volumes behave in strange ways and getting them to mix is extremely difficult. This is where a powerful mathematical idea that involves chaos theory – ‘chaotic mixing’ – becomes useful, since it provides a key mechanism for mixing at such small scales.

Professor Steve Wiggins, a mathematician at Bristol University, and his colleague Professor Julio Ottino, a chemical engineer at Northwestern University, USA, pioneered ideas of chaotic mixing back in the 1980s. Recently they stumbled on even earlier, highly abstract, ideas – the exotically named ‘linked twist maps’. These, they suddenly realised, could be applied to the problems of mixing tiny volumes.

A common design for many micromixers currently in use is a construction that has several segments, each with different geometrical characteristics. Twist maps describe the swirling motion particles undergo as they move down the length of one segment, while ‘linked twist maps’ describe particle motion through multiple segments. As a result of their structure, Wiggins and Ottino found that linked twist maps can be designed to give exceptional mixing properties at the microscale.

This discovery has provided Wiggins and Ottino with a new method for the design of micromixers, and the potential to revolutionise the technology.

Professor Wiggins said: “Chaotic mixing is probably a long way from the thinking of those who develop new designs for mixing fluids at this scale. But this is an area where seemingly abstract mathematical work could have a direct impact on the bottom line.”

Design strategies are mainly based on a ‘trial-and-error’ procedure. This can be prohibitively expensive and negatively impact on commercial viability, due to uncertainties in the fabrication processes.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>