Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos, Twist Maps and Big Business

26.07.2004


Obscure mathematical ideas developed back in the 1980s could solve current problems of mixing fluids at the microscale, and revolutionise the technology, reports an article in Science.

The need to mix fluids at the microscale affects a whole range of developing technologies – from inkjet printers to DNA analysis – and finding ways to do it is becoming big business. Millions of dollars have already been poured into ‘lab-on-a-chip’ projects, but making miniature labs is not just a question of scaling things down.

When you pour cream into your coffee via the back of a spoon, it forms a delicious layer on the top, through which you sip your coffee. Should you want to mix the layers together, however, you simply pick up the spoon and stir, creating turbulence in the fluids that causes them to mix.



But it’s a different story when the amount of fluids you are trying to mix is very, very small. Tiny volumes behave in strange ways and getting them to mix is extremely difficult. This is where a powerful mathematical idea that involves chaos theory – ‘chaotic mixing’ – becomes useful, since it provides a key mechanism for mixing at such small scales.

Professor Steve Wiggins, a mathematician at Bristol University, and his colleague Professor Julio Ottino, a chemical engineer at Northwestern University, USA, pioneered ideas of chaotic mixing back in the 1980s. Recently they stumbled on even earlier, highly abstract, ideas – the exotically named ‘linked twist maps’. These, they suddenly realised, could be applied to the problems of mixing tiny volumes.

A common design for many micromixers currently in use is a construction that has several segments, each with different geometrical characteristics. Twist maps describe the swirling motion particles undergo as they move down the length of one segment, while ‘linked twist maps’ describe particle motion through multiple segments. As a result of their structure, Wiggins and Ottino found that linked twist maps can be designed to give exceptional mixing properties at the microscale.

This discovery has provided Wiggins and Ottino with a new method for the design of micromixers, and the potential to revolutionise the technology.

Professor Wiggins said: “Chaotic mixing is probably a long way from the thinking of those who develop new designs for mixing fluids at this scale. But this is an area where seemingly abstract mathematical work could have a direct impact on the bottom line.”

Design strategies are mainly based on a ‘trial-and-error’ procedure. This can be prohibitively expensive and negatively impact on commercial viability, due to uncertainties in the fabrication processes.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>