Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos, Twist Maps and Big Business

26.07.2004


Obscure mathematical ideas developed back in the 1980s could solve current problems of mixing fluids at the microscale, and revolutionise the technology, reports an article in Science.

The need to mix fluids at the microscale affects a whole range of developing technologies – from inkjet printers to DNA analysis – and finding ways to do it is becoming big business. Millions of dollars have already been poured into ‘lab-on-a-chip’ projects, but making miniature labs is not just a question of scaling things down.

When you pour cream into your coffee via the back of a spoon, it forms a delicious layer on the top, through which you sip your coffee. Should you want to mix the layers together, however, you simply pick up the spoon and stir, creating turbulence in the fluids that causes them to mix.



But it’s a different story when the amount of fluids you are trying to mix is very, very small. Tiny volumes behave in strange ways and getting them to mix is extremely difficult. This is where a powerful mathematical idea that involves chaos theory – ‘chaotic mixing’ – becomes useful, since it provides a key mechanism for mixing at such small scales.

Professor Steve Wiggins, a mathematician at Bristol University, and his colleague Professor Julio Ottino, a chemical engineer at Northwestern University, USA, pioneered ideas of chaotic mixing back in the 1980s. Recently they stumbled on even earlier, highly abstract, ideas – the exotically named ‘linked twist maps’. These, they suddenly realised, could be applied to the problems of mixing tiny volumes.

A common design for many micromixers currently in use is a construction that has several segments, each with different geometrical characteristics. Twist maps describe the swirling motion particles undergo as they move down the length of one segment, while ‘linked twist maps’ describe particle motion through multiple segments. As a result of their structure, Wiggins and Ottino found that linked twist maps can be designed to give exceptional mixing properties at the microscale.

This discovery has provided Wiggins and Ottino with a new method for the design of micromixers, and the potential to revolutionise the technology.

Professor Wiggins said: “Chaotic mixing is probably a long way from the thinking of those who develop new designs for mixing fluids at this scale. But this is an area where seemingly abstract mathematical work could have a direct impact on the bottom line.”

Design strategies are mainly based on a ‘trial-and-error’ procedure. This can be prohibitively expensive and negatively impact on commercial viability, due to uncertainties in the fabrication processes.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>