Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of Huntington’s Disease Mutation More Complex than Supposed

26.07.2004


Competing theories about why brain cells die in Huntington’s disease may not be competitors after all, according to a report published July 23, 2004, in the early online edition of the Annals of Neurology.



Researchers report finding minor molecular abnormalities of the sort proposed by these different theories in cells throughout the brain and even in the skin. Yet only select groups of cells in a few movement centers of the brain are so vulnerable to these disruptions that they degenerate and die.

The results suggest that therapeutic strategies for Huntington’s--as well as other neurodegenerative diseases such as Alzheimer’s and Parkinson’s--may have to be more complex than previously supposed.


Huntington’s is an inherited, degenerative brain disease marked by movement abnormalities--involuntary, dance-like movements called "chorea" early in the illness and later a gradual loss of the ability to move muscles voluntarily--as well as psychiatric symptoms such as depression and mood swings.

Huntington’s disease is caused by mutations in a single gene. The mutation leads to an abnormal form of the protein called huntingtin, which accumulates into toxic deposits inside nerve cells. Researchers have focused their efforts on understanding why mutant huntingtin accumulates and how it might damage brain cells.

One prominent theory notes that there is a breakdown in the clearance of abnormal proteins in Huntington’s disease. Normally, a cellular ’garbage’ service called the ubiquitin-protesome system (UPS) tags defective proteins and disassembles them. In Huntington’s disease, the UPS does not appear to be fully functional, leaving defective proteins like huntingtin to accumulate.

However, researchers have also found other critical defects in the brain cells of Huntington’s patients, including a scarcity of molecules called neurotrophins that nourish brain cells, and problems with mitochondria, the "power plants" that produce energy for cells.

In their study, Ole Isacson, MD, and his colleagues at Harvard University and McLean Hospital explored the relationships between these different cellular processes in different cells inside and outside the brain.

Surprisingly, first author Hyemyung Seo, PhD, and colleagues found that the UPS is not working properly in the skin cells of Huntington’s disease either, yet there is no evidence that this harms the cells. Similarly, the researchers found abnormalities in neurotrophins and mitochondrial operation in many unaffected areas of the brain in Huntington’s disease.

"It appears that only a few select groups of cells in the brain fail to adapt to this combination of problems. The degeneration of these cells leads to Huntington’s disease," said Isacson.

An important implication of the study is that the mutant huntingtin protein does not just have one negative effect on brain cells, but several. This may mean that therapeutic strategies will have to take the form of combinations of drugs that address the different processes.

Mark Cookson, Ph.D, an expert on neurodegenerative disease at the National Institute on Aging in Bethesda, Maryland, believes this study will be of great interest to scientists who study diseases like Alzheimer’s and Parkinson’s, which also feature accumulations of abnormal proteins, problems in UPS ’garbage collection,’ and the death of only certain vulnerable subgroups of cells.

"An obvious follow-up is to look at other neurodegenerative diseases. Presumably, there would be a pattern of cellular deficits parallel to, but distinct from those of Huntington’s disease," said Cookson.

| newswise
Further information:
http://www.aneuroa.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>