Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein key to trafficking in nerve terminals

23.07.2004


A protein characterized by researchers at Baylor College of Medicine plays an important role in communication between neurons. This protein is overactive (up-regulated) in children with Down’s Syndrome.



Identifying this protein - Dap160 — and its function is an important step in understanding how neurons communicate with one another, said Dr. Hugo Bellen, BCM professor of molecular and human genetics, a Howard Hughes Medical Institute investigator, and director of the program in developmental biology. The report appears in the July 22, 2004, issue of the journal Neuron.

Dap 160 was found as part of a new screen developed in Bellen’s laboratory. The screen revealed many genes involved in neuronal function and development, said Bellen. Dap160 stands for Dynamin-associated protein of 160 kD (kilodaltons). Dynamin is a protein that is crucial to the final portion of the synaptic process.


Neurotransmitters are the chemicals that contain the message to be transmitted when neurons talk to each other or to other cells. These chemicals are contained in small vesicles inside nerve endings called synapses.

When a nerve pulse invades the nerve ending, these vesicles fuse with the membrane at the tip of the nerve ending (called the synaptic membrane). At this point, vesicles release their contents so that a nearby cell receives the message.

"You need to retrieve the vesicles at the synapse to maintain a constant supply of vesicles in the nerve terminal," said Bellen. At least two distinct types of vesicle retrieval occur at the synapse, but the most well studied mechanism of vesicle retrieval is based on retrieving little pieces of membrane from the synaptic membrane. As the vesicles start to bud off the cell membrane, dynamin accumulates on the vesicle. The role of this protein is still controversial, Bellen said. Some people think it’s a "pinchase," pinching the vesicle off the cell membrane. Others think that it recruits other proteins to help pinching off the vesicle.

When Dap160, which binds dynamin, is removed from the vesicle retrieval process, the pinching-off either does not occur properly, or occurs too late. As a result, the vesicle keeps growing and subsequently becomes loaded with too much neurotransmitter. Bellen and his colleagues believe that Dap160 stabilizes the complex of molecules involved in the retrieval and formation of vesicles, allowing for neurotransmitters to be released in a continuous fashion.

"Besides budding from the membrane, there is at least one other form of vesicle retrieval at the synapse", Bellen said. A rapid retrieval mechanism called "kiss and run" occurs when the vesicle fuses with the membrane but the vesicle membrane does not collapse into the synaptic membrane. Rather, kiss and run vesicles release neurotransmitters through a pore in the membrane. The vesicles are then retrieved by pinching of the fusion pore at the site of release. These vesicles stay close to release sites and are reused immediately.

Interestingly, Dap160 is not only involved in retrieving vesicles from the membrane, but it is also implicated in kiss and run type vesicle recycling. This has important implications for the regulation of vesicle retrieval mechanisms at the synapse, Bellen said.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>