Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nanobioengineering Laboratory Leads The Nanometric Scale Research Of A European Project Focused On The Differentiation Of St

23.07.2004


The director of the Nanobioengineering Laboratory of the CREBEC and sub-director of the Parc Científic de Barcelona (PCB, Barcelona Science Park), Josep Samitier, will coordinate the research lines on the application of nanobiotechnologies for the differentiation of stem cells in the European project entitled CellPROM, the most funded project in the first call of the VI Framework Programme. Josep Samitier will preside the CellPROM Scientific Committee on Nanotechnologies and will join its Management Committee, together with the coordinator of basic research, Andreas Manz, and the coordinator of CellPROM, Gunter Führ, from the Fraunhofer Institut Biomedizinische Technik.

In addition, the Nanobioengineering Laboratory also coordinates the broadest line of research in the project, accounting for 34% of the scientific effort, which focuses on the development of artificial surfaces that allow the controlled differentiation of stem cells whilst simultaneously minimizing their rejection once implanted in the patient.

The project is based on the premise that stem cells can be differentiated through interactions that take place at the cell surface. The final objective of CellPROM is to develop technologies with therapeutic applications in the field of the so-called tissue engineering by applying the tools provided by nanotechnology and the know-how on the differentiation of adult stem cells. Specifically, by producing cell cultures and tissues that can be used for auto-transplants, the project will allow Europe to lead the development in the new medical technology required to use stem cells for regenerative therapies.



At present, regenerative therapies are underway that, for example, use bone marrow-derived adult stem cells cultured in the laboratory, which are then implanted. CellPROM will develop surfaces that mimic biological ones, on which stem cells can be cultured through molecular signals that facilitate a more precise differentiation into the cells of interest.

Furthermore, the resulting cell cultures can also be used as alternatives to assays that involve experimental animals. These advances will have practical applications in the fields of new medical technology and in the biotechnology, pharmaceutical and agroalimentary sectors.

The final outcome of CellPROM will be a prototype that cannot be used in humans until it has passed the clinical trial phases, which will be started shortly.
The project includes the participation of 27 institutions from 12 European countries, which include prestigious institutes and centres such as the PasteurInstitute in France, the Royal Institute of Technology of Sweden, the University of Vienna and the Institute of Pharmaceutical Technology of Austria, the Swiss Federal Institute of Technology, Lausanne, the Fraunhofer Society of Germany and the University of Barcelona, through the Nanobioengineering Laboratory.

The CellPROM project has a total budget of more than 26 million Euros, 17.6 million of which have been granted by the European Commission. The project was officially presented in Saarbrücken, Germany, on 25 and 26 March 2004.

Rosina Malagrida | alfa
Further information:
http://www.pcb.ub.es

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>