Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Nanobioengineering Laboratory Leads The Nanometric Scale Research Of A European Project Focused On The Differentiation Of St


The director of the Nanobioengineering Laboratory of the CREBEC and sub-director of the Parc Científic de Barcelona (PCB, Barcelona Science Park), Josep Samitier, will coordinate the research lines on the application of nanobiotechnologies for the differentiation of stem cells in the European project entitled CellPROM, the most funded project in the first call of the VI Framework Programme. Josep Samitier will preside the CellPROM Scientific Committee on Nanotechnologies and will join its Management Committee, together with the coordinator of basic research, Andreas Manz, and the coordinator of CellPROM, Gunter Führ, from the Fraunhofer Institut Biomedizinische Technik.

In addition, the Nanobioengineering Laboratory also coordinates the broadest line of research in the project, accounting for 34% of the scientific effort, which focuses on the development of artificial surfaces that allow the controlled differentiation of stem cells whilst simultaneously minimizing their rejection once implanted in the patient.

The project is based on the premise that stem cells can be differentiated through interactions that take place at the cell surface. The final objective of CellPROM is to develop technologies with therapeutic applications in the field of the so-called tissue engineering by applying the tools provided by nanotechnology and the know-how on the differentiation of adult stem cells. Specifically, by producing cell cultures and tissues that can be used for auto-transplants, the project will allow Europe to lead the development in the new medical technology required to use stem cells for regenerative therapies.

At present, regenerative therapies are underway that, for example, use bone marrow-derived adult stem cells cultured in the laboratory, which are then implanted. CellPROM will develop surfaces that mimic biological ones, on which stem cells can be cultured through molecular signals that facilitate a more precise differentiation into the cells of interest.

Furthermore, the resulting cell cultures can also be used as alternatives to assays that involve experimental animals. These advances will have practical applications in the fields of new medical technology and in the biotechnology, pharmaceutical and agroalimentary sectors.

The final outcome of CellPROM will be a prototype that cannot be used in humans until it has passed the clinical trial phases, which will be started shortly.
The project includes the participation of 27 institutions from 12 European countries, which include prestigious institutes and centres such as the PasteurInstitute in France, the Royal Institute of Technology of Sweden, the University of Vienna and the Institute of Pharmaceutical Technology of Austria, the Swiss Federal Institute of Technology, Lausanne, the Fraunhofer Society of Germany and the University of Barcelona, through the Nanobioengineering Laboratory.

The CellPROM project has a total budget of more than 26 million Euros, 17.6 million of which have been granted by the European Commission. The project was officially presented in Saarbrücken, Germany, on 25 and 26 March 2004.

Rosina Malagrida | alfa
Further information:

More articles from Life Sciences:

nachricht Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix
13.10.2015 | University of Leeds

nachricht New Oregon approach for 'nanohoops' could energize future devices
13.10.2015 | University of Oregon

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>