Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy: Signals ’Brake’ in Brain Impaired

23.07.2004


To date epilepsy research has mainly concentrated on the transmission of the nerve cell signals to what are known as the synapses. However, recent observations by medical researchers from the US, France and the University of Bonn support the idea that in ’falling sickness’ the signal processing in the nerve cells (neurons) is altered: normally specific ion channels absorb the neuronal activity. In rats suffering from epilepsy, however, this signals brake seems impaired: they have far fewer functioning ion channels than healthy rats. The results are published in the latest edition of the prestigious scientific journal ’Science’ (23rd July, vol. 305, no. 5683). They offer hope of new therapeutic possibilities.

Epilepsy is a common disease: in Germany alone there are 600,000 people whose nerve cells in the brain occasionally switch from healthy chaos to common mode. The result of the uncontrolled mass discharge of neurons is loss of consciousness and spastic convulsions of the muscles, during which those affected can seriously injure themselves. Yet how this synchronised paroxysmic activity develops at the level of nerve cells is still largely a mystery.

Nerve cells are interlinked via a large number of branching networks through which they communicate with each other. Each neuron has a series of dendrites which receive signals from other neurons at what are known as synapses. The cell ’processes’ these incoming signals like a kind of biological microprocessor and transmits as a result electrical pulses via a special projection, the axon, to the dendrites of other neurons. Many epilepsy researchers have up to now assumed that when epilepsy occurs this communication between the cells does not work properly because the transmission of the signals to the synapses is impaired. However, the Bonn researchers in conjunction with their US colleagues and a research team from Marseilles discovered in the case of epileptic rats that the signal processing is not only affected in the synapses but also in the neurons themselves.



The nerve cells are surrounded by a cell membrane. Yet this membrane is not impervious: different kinds of specialised pores ensure that specific charged particles, the ions, can pass through the membrane. Some of these ion channels are permanently open, others only let ’their’ ions through when needed or use energy to ’pump’ them against a concentration gradient. One important ion pore is the Kv4.2 channel, which is permeable for positively charged potassium ions. This channel is mainly located at the signal inputs of a neutron, the dendrites, and has an important function there: it absorbs incoming excitant signals from other nerve cells. They ’trickle away’, so to speak, through the many little ’potassium leaks’; on their journey through the dendrites the pulses therefore level out more and more.

’In rats with what we call a temporal lobe epilepsy some dendrites have far fewer functioning Kv4.2 channels than healthy rats,’ the Bonn epilepsy researcher Professor Heinz Beck explains. There are two reasons for this, the researchers were able to show: on the one hand the genes for the potassium sluice are read less often, with the result that the cells produce fewer Kv4.2 channels. On the other hand a particular enzyme, the ERK or Extra-Cellular Signal-Regulated Kinase, changes the channels present chemically in such a way that they no longer function. The consequence is, Professor Beck adds, that ’since the input signals at the dendrites reach the neuron largely unabsorbed, the rats probably react much more frequently than healthy rats by transmitting an impulse to their signal output, the axon.’ The nerve impulses can therefore multiply more easily; the lack of signal absorbance may thus decisively contribute to the increased excitability of the neurons in chronic epilepsy.

When the teams impeded the ERK with specific substances, the signal response of the nerve cells largely normalised. The findings therefore make it appear possible to discover new therapeutic approaches. ’Admittedly, the ERK has so many tasks to do that there would probably be side-effects if it was impeded directly,’ says Heinz Beck. ’However, the attempt could be made to protect the Kv4.2 channels from ERK attack, or reverse the chemical changes in the channels.’

Professor Heinz Beck | alfa
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>