Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plant respiration not just an evolutionary leftover


A biological process in plants, thought to be useless and even wasteful, has significant benefits and should not be engineered out -- particularly in the face of looming climate change, says a team of UC Davis researchers.

The researchers have found that the process, photorespiration, is necessary for healthy plant growth and if impaired could inhibit plant growth, particularly as atmospheric carbon dioxide rises as it is globally. Their findings are published this week in the Proceedings of the National Academy of Sciences.

Over the past two hundred years, scientists have come to understand that plants are amazing biochemical factories that harness energy from sunlight to convert water and carbon dioxide into sugars that fuel the plant, while giving off oxygen.

Though elegantly simple in concept, this process, known as photosynthesis, is remarkably complex in detail. And for years, researchers have been puzzled by another process, photorespiration, which seems to have annoyingly associated with photosynthesis down the evolutionary pathway.

Photorespiration has appeared to be downright wasteful because it virtually undoes much of the work of photosynthesis by converting sugars in the plant back into carbon dioxide, water and energy.

Believing that photorespiration is a consequence of the higher levels of atmospheric carbon dioxide in long past ages, many scientists concluded that photorespiration is no longer necessary. Some have even set about to genetically engineer crop plants so that the activity of the enzyme that initiates both the light-independent reactions of photosynthesis and photorespiration would favor photosynthesis to a greater extent and minimize photorespiration.

The result, they have thought, would be more productive crop plants that make more efficient use of available resources.

But the new UC Davis study suggests that there is more to photorespiration than meets the eye and any attempts to minimize its activity in crop plants would be ill advised.

"Photorespiration is a mysterious process that under present condition dissipates about 25 percent of the energy that a plant captures during photosynthesis," said Arnold Bloom, a professor in UC Davis’ vegetable crops department and lead researcher on the study. "But our research has shown that photorespiration enables the plant to take inorganic nitrogen in the form of nitrate and convert it into a form that is useful for plant growth."

The UC Davis team used two different methods to demonstrate in both wheat and Arabidopsis, a common research plant, that when plants are exposed to elevated levels of atmospheric carbon dioxide or low levels of oxygen -- both conditions that inhibit photorespiration -- nitrate assimilation in the plant’s shoot slows down. Eventually, a shortage of nitrogen will curtail the plant’s growth.

"This explains why many plants are unable to sustain rapid growth when there is a significant increase in atmospheric carbon dioxide," said Bloom. "And, as we anticipate a doubling of atmospheric carbon dioxide associated with global climate change by the end of this century, our results suggest that it would not be wise to decrease photorespiration in crop plants."

The UC Davis study was supported by the National Science Foundation, the U.S. Department of Agriculture and an Israel Binational Agricultural Research and Development Fund fellowship.

Andy Fell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>