Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant respiration not just an evolutionary leftover

22.07.2004


A biological process in plants, thought to be useless and even wasteful, has significant benefits and should not be engineered out -- particularly in the face of looming climate change, says a team of UC Davis researchers.



The researchers have found that the process, photorespiration, is necessary for healthy plant growth and if impaired could inhibit plant growth, particularly as atmospheric carbon dioxide rises as it is globally. Their findings are published this week in the Proceedings of the National Academy of Sciences.

Over the past two hundred years, scientists have come to understand that plants are amazing biochemical factories that harness energy from sunlight to convert water and carbon dioxide into sugars that fuel the plant, while giving off oxygen.


Though elegantly simple in concept, this process, known as photosynthesis, is remarkably complex in detail. And for years, researchers have been puzzled by another process, photorespiration, which seems to have annoyingly associated with photosynthesis down the evolutionary pathway.

Photorespiration has appeared to be downright wasteful because it virtually undoes much of the work of photosynthesis by converting sugars in the plant back into carbon dioxide, water and energy.

Believing that photorespiration is a consequence of the higher levels of atmospheric carbon dioxide in long past ages, many scientists concluded that photorespiration is no longer necessary. Some have even set about to genetically engineer crop plants so that the activity of the enzyme that initiates both the light-independent reactions of photosynthesis and photorespiration would favor photosynthesis to a greater extent and minimize photorespiration.

The result, they have thought, would be more productive crop plants that make more efficient use of available resources.

But the new UC Davis study suggests that there is more to photorespiration than meets the eye and any attempts to minimize its activity in crop plants would be ill advised.

"Photorespiration is a mysterious process that under present condition dissipates about 25 percent of the energy that a plant captures during photosynthesis," said Arnold Bloom, a professor in UC Davis’ vegetable crops department and lead researcher on the study. "But our research has shown that photorespiration enables the plant to take inorganic nitrogen in the form of nitrate and convert it into a form that is useful for plant growth."

The UC Davis team used two different methods to demonstrate in both wheat and Arabidopsis, a common research plant, that when plants are exposed to elevated levels of atmospheric carbon dioxide or low levels of oxygen -- both conditions that inhibit photorespiration -- nitrate assimilation in the plant’s shoot slows down. Eventually, a shortage of nitrogen will curtail the plant’s growth.

"This explains why many plants are unable to sustain rapid growth when there is a significant increase in atmospheric carbon dioxide," said Bloom. "And, as we anticipate a doubling of atmospheric carbon dioxide associated with global climate change by the end of this century, our results suggest that it would not be wise to decrease photorespiration in crop plants."

The UC Davis study was supported by the National Science Foundation, the U.S. Department of Agriculture and an Israel Binational Agricultural Research and Development Fund fellowship.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>