Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant respiration not just an evolutionary leftover

22.07.2004


A biological process in plants, thought to be useless and even wasteful, has significant benefits and should not be engineered out -- particularly in the face of looming climate change, says a team of UC Davis researchers.



The researchers have found that the process, photorespiration, is necessary for healthy plant growth and if impaired could inhibit plant growth, particularly as atmospheric carbon dioxide rises as it is globally. Their findings are published this week in the Proceedings of the National Academy of Sciences.

Over the past two hundred years, scientists have come to understand that plants are amazing biochemical factories that harness energy from sunlight to convert water and carbon dioxide into sugars that fuel the plant, while giving off oxygen.


Though elegantly simple in concept, this process, known as photosynthesis, is remarkably complex in detail. And for years, researchers have been puzzled by another process, photorespiration, which seems to have annoyingly associated with photosynthesis down the evolutionary pathway.

Photorespiration has appeared to be downright wasteful because it virtually undoes much of the work of photosynthesis by converting sugars in the plant back into carbon dioxide, water and energy.

Believing that photorespiration is a consequence of the higher levels of atmospheric carbon dioxide in long past ages, many scientists concluded that photorespiration is no longer necessary. Some have even set about to genetically engineer crop plants so that the activity of the enzyme that initiates both the light-independent reactions of photosynthesis and photorespiration would favor photosynthesis to a greater extent and minimize photorespiration.

The result, they have thought, would be more productive crop plants that make more efficient use of available resources.

But the new UC Davis study suggests that there is more to photorespiration than meets the eye and any attempts to minimize its activity in crop plants would be ill advised.

"Photorespiration is a mysterious process that under present condition dissipates about 25 percent of the energy that a plant captures during photosynthesis," said Arnold Bloom, a professor in UC Davis’ vegetable crops department and lead researcher on the study. "But our research has shown that photorespiration enables the plant to take inorganic nitrogen in the form of nitrate and convert it into a form that is useful for plant growth."

The UC Davis team used two different methods to demonstrate in both wheat and Arabidopsis, a common research plant, that when plants are exposed to elevated levels of atmospheric carbon dioxide or low levels of oxygen -- both conditions that inhibit photorespiration -- nitrate assimilation in the plant’s shoot slows down. Eventually, a shortage of nitrogen will curtail the plant’s growth.

"This explains why many plants are unable to sustain rapid growth when there is a significant increase in atmospheric carbon dioxide," said Bloom. "And, as we anticipate a doubling of atmospheric carbon dioxide associated with global climate change by the end of this century, our results suggest that it would not be wise to decrease photorespiration in crop plants."

The UC Davis study was supported by the National Science Foundation, the U.S. Department of Agriculture and an Israel Binational Agricultural Research and Development Fund fellowship.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>