Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UWE Scientists Help Bring Computers And Robots To Life


New sources of computing power – derived from such novel areas as neuron-like cells and powerful chemical reactions – could form the heart of the next generation of computers. The University of the West of England and four research partners have just won £1.8 million in government funding to carry out research into computers that are inspired by nature. This means UWE is playing a key role in two out of only five nationally funded projects aimed at such exciting multidisciplinary research.

In the first, £1.2 million project, computer scientists, biologists and chemists at UWE will work with the universities of Sussex and Leeds to develop alternatives to the silicon chip. They will look at two new approaches that use real biological neurons and networks of chemical reactions.

Project leader Dr Larry Bull from UWE’s faculty of Computing, Engineering and Mathematical Sciences said: “We will combine techniques from machine learning with those from cell culturing, neurobiology and experimental chemistry. We are using cultures of neuron-like cells that are stimulated electrically to form growing networks. The network’s responses to such stimuli are electrical signals that may be interpreted as a computation. Certain chemical reactions can be controlled by light and we can observe and measure the spontaneous waves they create across a suitable substrate within a network, again interpreting resultant behaviour as computation.

“With this research we aim to create novel computing devices from materials which have inherently complex properties that could therefore be capable of solving tasks of great complexity. There are many other potential beneficiaries in areas such as medicine.”

Professor Wendy Purcell, Dean of the Faculty of Applied Sciences and a key researcher in the team said: “We are delighted to be part of this multidisciplinary team seeing our work on developing tissue models in the lab that behave as the in-life cells being used to drive machines. This work comes from our studies on producing cell cultures to replace animal use in research. Cells harvested from your breakfast egg may now power the computers of the future so machines can think!"

The second project, in which UWE and Edinburgh University are collaborating with the University of Sheffield, will investigate how the human brain is able to control and stabilize body movement so effectively, with the aim of applying the findings to robotic systems. Examples of possible uses are for small rough-terrain walking robots that could be used for operating in dangerous environments such as minefields, or for rescue missions in natural or human-created disaster sites such as plane crashes.

“We will be using the award to build a six-legged walking robot that guides its motion using a motorised vision system,” said Dr Tony Pipe. “We will embed an artificial cerebellum directly into electronic hardware to act as the core controller in guiding movement. The cerebellum is the part of the brain that acts as a regulator in the timing of movements. One example is known as the vestibulo-ocular reflex, where we compensate for the undulations of the walking motion in maintaining gaze stability on an object. This ability is crucial for maintaining the gaze on a remote object during ‘search and find’ operations.

“The research will bring about a significant advance in our understanding of how the cerebellum controls body stability and how this can be mimicked by robots. This means that robot engineers will benefit from new discoveries in neuroscience and vice versa.”

Professor Steve Hoddell, Dean of the Faculty of Computing, Engineering and Mathematical Sciences at UWE, said: “These are very exciting awards and show that UWE is at the forefront of interdisciplinary research into new and unconventional types of computing.
The applications of this work have a potential that could be felt across a wide range of areas including artificial intelligence, biology, engineering, medicine and neuroscience.”

Lesley Drake | alfa
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>