Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE Scientists Help Bring Computers And Robots To Life

22.07.2004


New sources of computing power – derived from such novel areas as neuron-like cells and powerful chemical reactions – could form the heart of the next generation of computers. The University of the West of England and four research partners have just won £1.8 million in government funding to carry out research into computers that are inspired by nature. This means UWE is playing a key role in two out of only five nationally funded projects aimed at such exciting multidisciplinary research.



In the first, £1.2 million project, computer scientists, biologists and chemists at UWE will work with the universities of Sussex and Leeds to develop alternatives to the silicon chip. They will look at two new approaches that use real biological neurons and networks of chemical reactions.

Project leader Dr Larry Bull from UWE’s faculty of Computing, Engineering and Mathematical Sciences said: “We will combine techniques from machine learning with those from cell culturing, neurobiology and experimental chemistry. We are using cultures of neuron-like cells that are stimulated electrically to form growing networks. The network’s responses to such stimuli are electrical signals that may be interpreted as a computation. Certain chemical reactions can be controlled by light and we can observe and measure the spontaneous waves they create across a suitable substrate within a network, again interpreting resultant behaviour as computation.


“With this research we aim to create novel computing devices from materials which have inherently complex properties that could therefore be capable of solving tasks of great complexity. There are many other potential beneficiaries in areas such as medicine.”

Professor Wendy Purcell, Dean of the Faculty of Applied Sciences and a key researcher in the team said: “We are delighted to be part of this multidisciplinary team seeing our work on developing tissue models in the lab that behave as the in-life cells being used to drive machines. This work comes from our studies on producing cell cultures to replace animal use in research. Cells harvested from your breakfast egg may now power the computers of the future so machines can think!"

The second project, in which UWE and Edinburgh University are collaborating with the University of Sheffield, will investigate how the human brain is able to control and stabilize body movement so effectively, with the aim of applying the findings to robotic systems. Examples of possible uses are for small rough-terrain walking robots that could be used for operating in dangerous environments such as minefields, or for rescue missions in natural or human-created disaster sites such as plane crashes.

“We will be using the award to build a six-legged walking robot that guides its motion using a motorised vision system,” said Dr Tony Pipe. “We will embed an artificial cerebellum directly into electronic hardware to act as the core controller in guiding movement. The cerebellum is the part of the brain that acts as a regulator in the timing of movements. One example is known as the vestibulo-ocular reflex, where we compensate for the undulations of the walking motion in maintaining gaze stability on an object. This ability is crucial for maintaining the gaze on a remote object during ‘search and find’ operations.

“The research will bring about a significant advance in our understanding of how the cerebellum controls body stability and how this can be mimicked by robots. This means that robot engineers will benefit from new discoveries in neuroscience and vice versa.”

Professor Steve Hoddell, Dean of the Faculty of Computing, Engineering and Mathematical Sciences at UWE, said: “These are very exciting awards and show that UWE is at the forefront of interdisciplinary research into new and unconventional types of computing.
The applications of this work have a potential that could be felt across a wide range of areas including artificial intelligence, biology, engineering, medicine and neuroscience.”

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>