Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists fear new drugs and genetic doping

21.07.2004


Can doping athletes be stopped? With the Athens Olympics about to open, scientists are increasingly concerned that sophisticated techniques for evading drug tests will make it difficult for testers to catch athletes using steroids and other drugs, especially at future athletic competitions when genetic-based enhancements are expected to be prevalent.



In the August/September issue of Update, the magazine of the New York Academy of Sciences, writer Diane Kightlinger documents how advances in drug production and genetic engineering are benefiting athletes interested in evading tests – and the ways in which scientists are figuring out ways to create ever-better detection techniques.

Today, the pharmacopoeia of substances banned at the Olympic Games includes not only stimulants, but narcotics, anabolic steroids, beta-2 agonists, and peptide hormones such as EPO (erythropoietin) and hGH (human growth hormone). Last year, the drug company Balco was charged with distributing designer drugs such as the steroid THG (tetrahydrogestrinone).


Putting Drugs to the Test

In recent years, researchers focused on catching dopers have won important battles by developing tests for THG and EPO and using them to catch abusers. In addition, the creation of the World Anti-Doping Agency (WADA) in November 1999 may soon result in near-universal standards for doping control across sports federations and countries.

However, current methods of Olympic testing still cannot catch athletes who use steroids to bulk up during training but stop months before the Games, or those who use EPO more than a few days before competition.

To combat these tricks to avoid detection, new techniques are being developed to identify illegal substances and methods. WADA has also implemented "year-round, no-notice testing," says Casey Wade, WADA education director. "Give athletes more than 24-hour notice and they can provide a sample, but it’s going to be free from detection."

The International Olympic Committee requires most Olympic athletes to make themselves available for doping tests anytime and anywhere for one year prior to the opening of the Games. This year, WADA plans some 2,400 tests, a process of selection that takes into account the substances that an athlete might use and the time it would take a body to clear the drug from an athlete’s system before the Athens games start.

Lab testing faces many challenges. The U.S. Olympic testing lab facility at the University of California at Los Angeles employs an array of mass spectrometry techniques designed to analyze testing samples. The technique identifies steroids by breaking up molecules and sorting the resulting fragments by mass. However, it may miss drugs like THG because THG may have been modified in such a way as to make detecting those characteristic fragments difficult to spot on conventional tests.

Don Catlin, the lab’s director, says that the detection of EPO and hGH abuse is particularly difficult because they appear only in minute quantities in body fluids. EPO increases oxygen delivery to the muscles, and hGH enhances muscle growth. When extracting EPO from urine, Catlin says, "the less there is of it, the more difficult it is to extract with good recovery."

He adds, "Most of the drugs we’re working with have molecular weights of 300. EPO has a weight of 30,000 to 35,000, which is too large for our mass spectrometers to work on."

Doping Through Genetic Engineering

Yet another challenge to testers comes from genetic approaches to enhancing performance. According to Theodore Friedmann, director of the Program in Human Gene Therapy at the University of California at San Diego, the promise of gene transfer methods to build skeletal muscle and increase red blood cell production means that anyone can dope their performance via genetic engineering.

"The genes are all available and you make them," he said. "All it takes is three or four well-trained postdocs and a million or two dollars."

In response, the WADA has added methods such as blood and gene doping to its list of prohibited substances. New tests are being developed to detect "gene" tampering, and blood tests, rather than urine tests, is already on its way to becoming the standard for catching dopers.

In spite of these challenges, researchers are confident that they will able to face these increasingly sophisticated substances and delivery methods. Scientists are making strides by developing effective tests, streamlining existing procedures, and working with agencies such as the WADA to ensure that 21st century technology benefits, rather than compromises, the spirit of the ancient Olympics.

Jennifer Tang | EurekAlert!
Further information:
http://www.nyas.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>