Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists fear new drugs and genetic doping

21.07.2004


Can doping athletes be stopped? With the Athens Olympics about to open, scientists are increasingly concerned that sophisticated techniques for evading drug tests will make it difficult for testers to catch athletes using steroids and other drugs, especially at future athletic competitions when genetic-based enhancements are expected to be prevalent.



In the August/September issue of Update, the magazine of the New York Academy of Sciences, writer Diane Kightlinger documents how advances in drug production and genetic engineering are benefiting athletes interested in evading tests – and the ways in which scientists are figuring out ways to create ever-better detection techniques.

Today, the pharmacopoeia of substances banned at the Olympic Games includes not only stimulants, but narcotics, anabolic steroids, beta-2 agonists, and peptide hormones such as EPO (erythropoietin) and hGH (human growth hormone). Last year, the drug company Balco was charged with distributing designer drugs such as the steroid THG (tetrahydrogestrinone).


Putting Drugs to the Test

In recent years, researchers focused on catching dopers have won important battles by developing tests for THG and EPO and using them to catch abusers. In addition, the creation of the World Anti-Doping Agency (WADA) in November 1999 may soon result in near-universal standards for doping control across sports federations and countries.

However, current methods of Olympic testing still cannot catch athletes who use steroids to bulk up during training but stop months before the Games, or those who use EPO more than a few days before competition.

To combat these tricks to avoid detection, new techniques are being developed to identify illegal substances and methods. WADA has also implemented "year-round, no-notice testing," says Casey Wade, WADA education director. "Give athletes more than 24-hour notice and they can provide a sample, but it’s going to be free from detection."

The International Olympic Committee requires most Olympic athletes to make themselves available for doping tests anytime and anywhere for one year prior to the opening of the Games. This year, WADA plans some 2,400 tests, a process of selection that takes into account the substances that an athlete might use and the time it would take a body to clear the drug from an athlete’s system before the Athens games start.

Lab testing faces many challenges. The U.S. Olympic testing lab facility at the University of California at Los Angeles employs an array of mass spectrometry techniques designed to analyze testing samples. The technique identifies steroids by breaking up molecules and sorting the resulting fragments by mass. However, it may miss drugs like THG because THG may have been modified in such a way as to make detecting those characteristic fragments difficult to spot on conventional tests.

Don Catlin, the lab’s director, says that the detection of EPO and hGH abuse is particularly difficult because they appear only in minute quantities in body fluids. EPO increases oxygen delivery to the muscles, and hGH enhances muscle growth. When extracting EPO from urine, Catlin says, "the less there is of it, the more difficult it is to extract with good recovery."

He adds, "Most of the drugs we’re working with have molecular weights of 300. EPO has a weight of 30,000 to 35,000, which is too large for our mass spectrometers to work on."

Doping Through Genetic Engineering

Yet another challenge to testers comes from genetic approaches to enhancing performance. According to Theodore Friedmann, director of the Program in Human Gene Therapy at the University of California at San Diego, the promise of gene transfer methods to build skeletal muscle and increase red blood cell production means that anyone can dope their performance via genetic engineering.

"The genes are all available and you make them," he said. "All it takes is three or four well-trained postdocs and a million or two dollars."

In response, the WADA has added methods such as blood and gene doping to its list of prohibited substances. New tests are being developed to detect "gene" tampering, and blood tests, rather than urine tests, is already on its way to becoming the standard for catching dopers.

In spite of these challenges, researchers are confident that they will able to face these increasingly sophisticated substances and delivery methods. Scientists are making strides by developing effective tests, streamlining existing procedures, and working with agencies such as the WADA to ensure that 21st century technology benefits, rather than compromises, the spirit of the ancient Olympics.

Jennifer Tang | EurekAlert!
Further information:
http://www.nyas.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>