Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the evolution of a virus

21.07.2004


A University of California scientist working at Los Alamos National Laboratory with collaborators from the University of Cambridge (England) and the World Health Organization National Influenza Center at Erasmus Medical Center, (Rotterdam, Netherlands) have developed a computer modeling method for mapping the evolution of the influenza virus. The method could soon help medical researchers worldwide develop a better understanding of certain mutations in influenza and other viruses that allow diseases to dodge the human immune system.



In a paper published in today’s edition of the journal Science, the team of scientists from the United States and Europe describe their work quantifying and visualizing the antigenic and genetic evolution of the influenza A (H3N2) virus from its initial introduction into humans in 1968 up to 2003. The study resulted in a map that shows the virus evolved as a series of 11 closely related virus clusters as it has sought to elude human immunity over the decades.

The mapping method will allow researchers involved in vaccine development and viral surveillance programs for influenza, and potentially for other pathogens such as Hepatitis C and HIV as well, to quantify and visualize the evolution of these viruses. It can assist in monitoring antigenic differences among vaccine and circulating viral strains, and can help in quantifying the effects of vaccination. The approach also offers a route for predicting the relative infection success of emerging virus strains.


According to Los Alamos computational biologist Alan Lapedes, "This collaboration was particularly exciting because it involved close interaction between experts in computation and virology and medicine. Once we had created the map, we tested its reliability by making hundreds of predictions of how well certain strains might match up and then conducting laboratory tests to check the predictions. It’s very gratifying that this basic research also has practical application to an important human pathogen, influenza."

Experts estimate that influenza epidemics cause an estimated 500,000 human deaths worldwide each year. Although antibodies provide protective immunity to influenza virus infection, the antigenic structure of proteins that stimulate immune responses changes significantly over time, a process known as antigenic drift, so in most years the influenza vaccine has to be updated to ensure sufficient efficacy against newly emerging variants.

In addition to Lapedes, the team members included Derek Smith from the University of Cambridge, and Ron Fouchi and his colleagues Jan de Jong, Theo Bestebroer, Guus Rimmelzwaan and Albert Osterhaus from National Influenza Center at Erasmus Medical Center.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>