Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows new test for ovarian cancer is 100% effective

20.07.2004


The journal Endocrine-Related Cancer today publishes work showing that scientists from the Clinical Proteomics Program of the US National Cancer Institute (NCI) have discovered a test that was 100% effective for detecting early ovarian cancer in their study.



The study describes the use of a high-resolution mass spectrometer to measure patterns of protein markers in a small sample of blood. The mass spectrometer measured slight differences in the weights between normal and cancerous proteins, enabling the researchers to identify the cells that would lead to cancer. The results of the trial revealed 100 percent sensitivity and 100 percent specificity for the detection of ovarian cancer, including the correct classification of all stage I ovarian cancer cases (where the cancer is still confined to the ovaries).

There are about 6,800 new cases of ovarian cancer each year in the UK, making it the fourth most common cancer among British women*.


Dr Tim Veenstra of the NCI Biomedical Proteomics Program and lead author of the study stated “This system is the latest generation of the technology we first described in Lancet in 2002. In this new study we used a larger set of new clinical samples (250 samples), and we showed that a higher resolution instrument could achieve higher sensitivity and specificity compared to the lower resolution instrument used previously.”

Dr Emanuel Petricoin of the FDA stated “This is the first step of the rigorous validation necessary as we attempt to speed this technology to broad public benefit.” Dr Lance Liotta of the NCI stated, “We incorporated new quality control methods into this latest study, and achieved 100% sensitivity and specificity in blinded testing and validation sets. We are focusing on ovarian cancer as a high priority because early diagnosis could have a major impact on treatment outcome.”

Dr Veenstra added “At present, this is a system in development, so it’s not yet suitable for a routine screening programme. However this method promises a real step forward in detecting ovarian cancer at an early stage. We hope that within a few years we will be able to develop a system which will enter routine diagnostic use.”

Jane Shepley | alfa
Further information:
http://www.endocrinology.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>