Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows new test for ovarian cancer is 100% effective

20.07.2004


The journal Endocrine-Related Cancer today publishes work showing that scientists from the Clinical Proteomics Program of the US National Cancer Institute (NCI) have discovered a test that was 100% effective for detecting early ovarian cancer in their study.



The study describes the use of a high-resolution mass spectrometer to measure patterns of protein markers in a small sample of blood. The mass spectrometer measured slight differences in the weights between normal and cancerous proteins, enabling the researchers to identify the cells that would lead to cancer. The results of the trial revealed 100 percent sensitivity and 100 percent specificity for the detection of ovarian cancer, including the correct classification of all stage I ovarian cancer cases (where the cancer is still confined to the ovaries).

There are about 6,800 new cases of ovarian cancer each year in the UK, making it the fourth most common cancer among British women*.


Dr Tim Veenstra of the NCI Biomedical Proteomics Program and lead author of the study stated “This system is the latest generation of the technology we first described in Lancet in 2002. In this new study we used a larger set of new clinical samples (250 samples), and we showed that a higher resolution instrument could achieve higher sensitivity and specificity compared to the lower resolution instrument used previously.”

Dr Emanuel Petricoin of the FDA stated “This is the first step of the rigorous validation necessary as we attempt to speed this technology to broad public benefit.” Dr Lance Liotta of the NCI stated, “We incorporated new quality control methods into this latest study, and achieved 100% sensitivity and specificity in blinded testing and validation sets. We are focusing on ovarian cancer as a high priority because early diagnosis could have a major impact on treatment outcome.”

Dr Veenstra added “At present, this is a system in development, so it’s not yet suitable for a routine screening programme. However this method promises a real step forward in detecting ovarian cancer at an early stage. We hope that within a few years we will be able to develop a system which will enter routine diagnostic use.”

Jane Shepley | alfa
Further information:
http://www.endocrinology.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>