Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRH1 and Wnt signaling come together in convergent extension

20.07.2004


The African clawed frog, Xenopus laevis, begins development as a compact ball of cells that undergoes a dramatic transformation through cell migrations and positional rearrangements that result in the separation of the embryo into three distinct germ layers, which go on to give rise to all of the tissues and structures in the adult animal’s body. During this transformation, known as gastrulation, the embryo changes from a roughly spherical shape to an elongated, streamlined form through a process called convergent extension (CE), in which polarized cells migrate to and merge at the embryo’s midline, driving it to lengthen along its anterior-posterior axis.



A number of genes involved in the regulation of convergent extension have been identified in amphibians and other vertebrates, such as zebrafish, but the picture of the underlying molecular mechanisms remains incomplete. Researchers at the RIKEN Center for Developmental Biology (CDB; Kobe, Japan) have now added a new piece to the puzzle. In a report published in the advanced online edition of Nature Cell Biology, Noriaki Sasai and colleagues in the Laboratory for Organogenesis and Neurogenesis (Group Director, Yoshiaki Sasai) show that the product of the gene NRH1 is essential to the regulation of CE movements in the frog.

While performing a screen of genes expressed in the posterior neuroectoderm, Sasai et al. identified a gene encoding a protein that showed similarities to p75NTR, a neurotrophin receptor. (Neurotrophins are molecules that function in the survival, growth and migration of neurons.) However, on testing its affinity for neurotrophin ligands, the group found that, unlike p75NTR, NRH1 did not bind with neurotrophins, which led them to seek other biological roles for the protein.


Experiments in which NRH1 was overexpressed by injecting its messenger RNA directly into very early (4-cell stage) embryos resulted in shortening of the body axis and the failure of mesodermal and neural plate marker gene expression to converge on the midline or extend axially. Interestingly, interfering with NRH1 function by introducing morpholinos to block production of the NRH1 protein had similar effects – the inhibition of convergent extension. That both gain and loss of NRH1 function resulted in the failure of CE activity suggested that the gene’s function in this process is tightly regulated.

These first findings led Sasai to investigate possible interactions between NRH1 and genes involved in the Wnt/PCP (planar cell polarity) signaling pathway, which is also known to play an important role in the regulation of CE movements in both fish and frog through the activity of downstream small GTPases. This protein family, which includes Rho, Rac and Cdc42, interacts with the cytoskeleton and plays important roles in the dynamics of cell morphology and motility. Overexpression and loss-of-function of NRH1 in the marginal zone (where convergent extension originates) respectively resulted in increased and decreased Rho, Rac and Cdc42 activity, confirming the link between NRH1 and Rho-family small GTPases. Loss of NRH1 function could be rescued by the co-injection of Frz7, a Wnt receptor functioning upstream of Rho, Rac and Cdc42 in the PCP pathway and, similarly, NRH1 complemented a dominant-negative Frz7 phenotype, indicating the two proteins play compensatory and mutually independent roles in the activation of small GTPases.

Further experiments showed that NRH1’s effects on CE movements are also mediated by a second branch of the Wnt/PCP pathway, in which MKK7 and JNK work to phosphorylate c-Jun in the animal cap (a region of prospective ectoderm located on the roof of the blastocoel, a hollow in the spherical early embryo). As with the small GTPases, the activation of the MKK7-JNK cascade could also be effected by either Frz7 or NRH1, but it was found that NRH1 functioned independently of Xdsh, another upstream regulator of Rho-family small GTPase activity in the Wnt/PCP pathway. The transduction mechanisms by which NRH1 interacts with Wnt/PCP signaling factors remain to be worked out, as do the specifics of the inter-related but apparently independent roles of NRH1 and PCP signaling in the control of cell movements within the developing embryo.

Doug Sipp | EurekAlert!
Further information:
http://www.cdb.riken.jp

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>