Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation’s trigger finger

20.07.2004


A molecule found in nearly all cells plays a vital role in kick-starting the production of key biological molecules involved in inflammation, a group of Salk Institute scientists has discovered. The finding, published in the June 25 issue of Science, may lead to new strategies for blocking the devastating inflammation that lies at the heart of autoimmune disorders such as multiple sclerosis, arthritis, lupus as well as some cancers.

When the cells of the body are confronted with toxic chemicals or disease-causing organisms, such as viruses and bacteria, the immune system mobilizes rapidly to produce an inflammatory response. This army of chemical and cellular defenses is unleashed through a complex chain of molecular events, triggered by master control proteins. These control proteins act as recruiting officers, rallying other proteins to set up the inflammatory defense. One of the most important molecular sergeants is a protein called nuclear factor-kappa B (NF-kB), which can order the production of scores of defensive proteins.

But NF-kB can’t work alone; it requires the help of a complicated complex of other proteins. A team of scientists which included Jeanette Ducut Sigalla, Virgine Bottero and Inder Verma from the Salk Institute together with colleagues from CellGene found that a protein called ELKS is a crucial member of this complex. Verma’s team determined that when ELKS was missing, NF-kB was unable to activate the production of proteins involved in inflammation.



"NF-kB is a major cell survival signaling molecule, but it needs to be induced," said Verma. "It normally is found in an inactive form in nearly all cells, but in response to external signals, encourages inflammatory responses and only triggers those responses when it receives the right messages. ELKS is one of the essential component of the complex, without which NF-kB can’t function."

Inflammation is central to the body’s generalized defensive response, attacking any invader in the same way by boosting blood flow and recruiting specialized cells to attack and destroy the invading organisms. In some diseases, however, the immune system misfires and attacks the body, inflaming nerve, liver, muscle and other cells.

Because of its central role in initiating inflammation, NF-kB is being intensely scrutinized by pharmaceutical researchers looking for new therapies for autoimmune diseases like lupus and arthritis, and other diseases such as cancer. However, it is a difficult target for drug intervention because it is a vital component of most cells in the body; curbing its activity could kill all cells, including healthy ones. Verma and his group hope that by pinpointing other molecules that help NF-kB do its job, they may find new ways of stopping inappropriate inflammation.

Andrew Porterfield | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>