Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Educating immune system may ease future use of stem cells

20.07.2004


Results of laboratory experiments by Johns Hopkins scientists suggest it may be possible to "educate" the immune system to recognize rather than destroy human embryonic stem cells. Doing so could reduce the risk of rejection if the primitive cells are someday transplanted into people with conditions like Parkinson’s disease, diabetes or spinal cord injuries, the researchers say.

In their experiments, described in the July 10 issue of The Lancet, the Hopkins team successfully coaxed human embryonic stem cells to become the special "flag-waving" cells that tell the immune system what is "friend" and what is "foe." In additional experiments in the lab, the researchers found that these so-called antigen presenting cells can control the responses of other immune cells, called T cells, whose job is either to attack or to co-exist with "foreign" cells.

"This is the first evidence that human embryonic stem cells can generate antigen presenting cells that could be used to educate a patient’s immune system," says Linzhao Cheng, Ph.D., assistant professor in Johns Hopkins’ Institute for Cell Engineering. "It’s a small but important step toward future clinical use of the stem cells, but many challenges remain."



Because all human cells carry proteins that identify them as coming from a particular person, even embryonic stem cells could be rejected if their identifying proteins, or antigens, don’t exactly match the recipients’.

But matching embryonic stem cells to potential recipients carries ethical dilemmas for many, since it might require destruction of more in vitro fertilized embryos to get new embryonic stem cell lines or attempting so-called therapeutic cloning (somatic cell nuclear transfer), which would use an individual’s regular cells to create the early embryos from which stem cells are derived. Cheng adds that the science is far from making the latter a practical option, and notes that neither approach provides an exact match for patients.

Even the use of powerful immune-suppressing drugs, such as those used for organ and tissue transplant recipients, would require better "matches" than today’s limited selection of embryonic stem cells can provide, says Cheng.

A paper by Hopkins researchers and others last fall suggests that to provide embryonic stem cells that acceptably and equitably match an equal percentage of various ethnic groups, at least 85 carefully selected stem cell lines would need to be established. There are currently just a few dozen validated lines of human embryonic stem cells, most scientists think.

Because of the stem cells’ flexibility, however, some scientists are trying to make the cells "stealthy" so they might escape detection by the immune system, even if they don’t perfectly match the patient. One potential stealth-inducing technique is to modify or replace the genes in the embryonic stem cell that control production of rejection-inducing proteins, but progress has been slow, Cheng says.

His team is also pursuing a second option — using the embryonic stem cells to get special immune cells. Because both the immune cells and the therapeutic cells — say pancreatic islet cells for a type I diabetic, or dopamine-producing neurons for a person with Parkinson’s disease — would be derived from the same embryonic stem cell line, they would match one another. And the immune cells then could tell the patient’s immune system that the transplanted therapeutic cells "belong."

"In some clinical situations, studies have demonstrated that if you can get immune cells to recognize the transplanted tissue as ’friend,’ then the chances of rejection are lower," says Cheng.

For example, transplanting bone marrow from an organ donor into the recipient, at the same time as or prior to transplantation of the needed organ — say, a kidney — has been associated with reduced rejection, says Cheng. The transplanted bone marrow cells co-exist with the patient’s own tissue and essentially create a new corner of the patient’s immune system that recognizes the transplanted organ as self.

"We’re presenting the first, very early suggestion that the same idea might be applicable to future applications of embryonic stem cells," says Cheng. "There still are many challenges ahead to know whether this will apply to potential uses of embryonic stem cells, but it’s important to try to address the issues of ’matching’ and rejection before the cells reach the clinic."

By bathing the human embryonic stem cells in a soup of certain proteins known to encourage the cells’ progression into various types of blood cells, postdoctoral fellows Xiangcan Zhan and Gautam Dravid and their colleagues coaxed the primitive cells to become antigen presenting cells, sentries that tell other immune cells whether to destroy or spare cells they meet. In additional experiments, the researchers also showed that these antigen presenting cells worked as they should, at least in the lab.

"The idea is that you would create a large number of the antigen presenting cells and related immune cells and give those to the patient before they get another cell type from the same embryonic stem cell line," says Cheng. "Then, the patient’s immune system would include cells that recognize the transplanted cells, preventing their destruction."

Animal experiments to prove that these human antigen presenting cells can really induce immune tolerance will be very difficult to do, he says, since any human cell would be attacked by a mouse’s immune system. Cheng says that his lab will continue looking for evidence of specific immunity and of immune tolerance induced in laboratory dishes of human embryonic stem cells.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/ice

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>