Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae bead breakthrough for badger TB vaccine

20.07.2004


A research team at Aston University has received funding to try and develop an efficient vaccine for badgers against Tuberculosis (TB). Special algae beads could be used to deliver the vaccine to the animals.



In the UK, badgers are often infected with bovine Tuberculosis (TB) and there is evidence that they may be linked with TB infection in cattle, which has resulted in randomised badger culling since 1998. Obviously this isn’t the most humane way of dealing with the problem, so researchers from the Medicines Research Unit at Aston are trying to develop a new TB vaccine delivery method for use on uncle brock.

TB is an infectious disease affecting man and many animal species including cattle. Last year alone, over 20,000 cattle were slaughtered in the UK (at a cost of 31 million in farmer compensation) due to TB infection. However the persistence of infection recorded in cattle herds remains high, and control of bovine TB has proved difficult in countries where there is a wildlife reservoir for the disease. Whilst the majority of TB transmission in herds results from cattle to cattle transmissions, a proportion of disease outbreaks may be associated with the presence of infected wildlife.


In an effort to remove this TB transmission route from badgers to cattle, Aston researchers Dr Yvonne Perrie and Dr Hannah Batchelor are working in conjunction with the Veterinary Licensing Agency to develop appropriate vaccines.

They explain: ’We have used alginate gel beads as a means to deliver the vaccine orally to badgers. A significant problem in the oral delivery of vaccines is that the acid within the stomach of the badger destroys the fragile vaccine, thus it does not reach the intestines where it is absorbed. If we can entrap the vaccine inside these gel beads we can protect it within the stomach so that it reaches the intestine where the beads dissolve to release the vaccine. Our preliminary experiments have shown that the beads remain intact within a solution of acid (simulated gastric fluid) for up to two hours, after this time the beads are transferred to simulated intestinal fluid where they are seen to fully dissolve over a two-hour period.

Alginates are natural products derived from seaweed, they have no taste or smell and can be found in many food substances eaten on a daily basis (eg ice-cream), so they are perfectly safe for badgers to eat. Current research is investigating how to get these beads to badgers and how they should be incorporated into bait that will temp them, so far it’s known that badgers mainly eat earthworms but also enjoy chocolate!’

So watch this space for news of the world’s nicest tasting vaccine.

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>