Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS And Tomatoes

19.07.2004


Scientists from Novosibirsk are currently creating a pleasant and harmless vaccine – an edible one. So far, they managed to incorporate the protein gene – HIV antigen in tomatoes. The research is supported by International Science and Technology Center (ISTC).



All patients would be overjoyed to get edible vaccines, contained in vegetables and fruit. Imagine, a patient eats a vaccine and this way gets protected from a dangerous infection. However, this is not a fantasy, the fact being confirmed by the research carried out by scientists all over the world. They are working hard to create an edible vaccine against HIV - a lethal virus. Russian researchers from ‘Vector’ State Scientific Center for Virology and Biotechnology jointly with the specialists from the Institute for Biological Chemistry and Fundamental Medicine in Novosibirsk, Siberian Institute for Plants Physiology and Biochemistry, Irkutsk, and the scientists from the Department for Agricultural Research, Maryland, USA are also working at this challenge. They are not at the stage of creating the vaccine yet, but the biologists have managed to incorporate the right gene into tomato plants and have proved that the protein required for the vaccine is not only contained in tomato leaves, but in tomato fruit. And this is a considerable achievement.

By the way, tomatoes have not been chosen by chance. The matter is that transgenic plants, which contain protein- HIV antigen, have already been cultivated, but these plants are either not edible, like tobacco, or must be thermally processed, like potatoes, and this way they practically lose their healing powers. To this end tomato serves ideally. The good thing is that this vegetable grows pretty well in Russia, compared to bananas, already used by Western scientists to produce vaccines.


In order to introduce the right gene into tomatoes, the scientists have constructed the so-called agro-bacterial vector. In the agro bacteria culture the researchers have collected the hybrid plasmid (circular DNA), where they have inserted the artificial protein gene, comprising key sites of two HIP virus proteins. This protein should serve as an antigen in order to get the immune response, and the important point is, not just for one virus protein, but for several ones. It was also required to add the cauliflower mosaic virus gene to the combination, and it was used as a promoter, which controls the functioning of the targeted gene. This complex construction together with the bacteria culture was introduced into tomato germs with the help of an injection needle. Afterwards, the germs were cultivated on a special nutrient medium, and those plants which grew roots, were planted into the soil and cultivated in the hothouse till they matured and developed fruit. With the help of the polymerase chain reaction the researchers have proved that the gene is present in the plants, and with the help of other methods have tested that it works – the protein is present in the leaves and, even more important, in tomato plant fruit.

However, the scientists have gone further – they needed to test if the gene could be passed over to the next generations of plants. They took the seeds of the transgenic tomatoes, couched them and grew the second generation tomatoes, which also happened to be transgenic. The ante-gene protein was present in their fruit.

“The cultivated transgenic tomato plants are worth to be considered in terms of creating an edible vaccine against HIV/AIDS and hepatite B on their basis”, this conclusion was made by the scientists. But how is this prospective edible vaccine supposed to work? Protein-antigen would interact with the mucous membrane of the gastrointestinal tract, activating the so-called mucous type of immune protection. As a result, the organism would synthesize antibodies against virus protein. The advantage of edible vaccines compared to injections is the absence of risk of passing over infections, edible vaccines are comparatively inexpensive and do not require any special facilities for storage and transportation. And finally, they are tasty!

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>