Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS And Tomatoes

19.07.2004


Scientists from Novosibirsk are currently creating a pleasant and harmless vaccine – an edible one. So far, they managed to incorporate the protein gene – HIV antigen in tomatoes. The research is supported by International Science and Technology Center (ISTC).



All patients would be overjoyed to get edible vaccines, contained in vegetables and fruit. Imagine, a patient eats a vaccine and this way gets protected from a dangerous infection. However, this is not a fantasy, the fact being confirmed by the research carried out by scientists all over the world. They are working hard to create an edible vaccine against HIV - a lethal virus. Russian researchers from ‘Vector’ State Scientific Center for Virology and Biotechnology jointly with the specialists from the Institute for Biological Chemistry and Fundamental Medicine in Novosibirsk, Siberian Institute for Plants Physiology and Biochemistry, Irkutsk, and the scientists from the Department for Agricultural Research, Maryland, USA are also working at this challenge. They are not at the stage of creating the vaccine yet, but the biologists have managed to incorporate the right gene into tomato plants and have proved that the protein required for the vaccine is not only contained in tomato leaves, but in tomato fruit. And this is a considerable achievement.

By the way, tomatoes have not been chosen by chance. The matter is that transgenic plants, which contain protein- HIV antigen, have already been cultivated, but these plants are either not edible, like tobacco, or must be thermally processed, like potatoes, and this way they practically lose their healing powers. To this end tomato serves ideally. The good thing is that this vegetable grows pretty well in Russia, compared to bananas, already used by Western scientists to produce vaccines.


In order to introduce the right gene into tomatoes, the scientists have constructed the so-called agro-bacterial vector. In the agro bacteria culture the researchers have collected the hybrid plasmid (circular DNA), where they have inserted the artificial protein gene, comprising key sites of two HIP virus proteins. This protein should serve as an antigen in order to get the immune response, and the important point is, not just for one virus protein, but for several ones. It was also required to add the cauliflower mosaic virus gene to the combination, and it was used as a promoter, which controls the functioning of the targeted gene. This complex construction together with the bacteria culture was introduced into tomato germs with the help of an injection needle. Afterwards, the germs were cultivated on a special nutrient medium, and those plants which grew roots, were planted into the soil and cultivated in the hothouse till they matured and developed fruit. With the help of the polymerase chain reaction the researchers have proved that the gene is present in the plants, and with the help of other methods have tested that it works – the protein is present in the leaves and, even more important, in tomato plant fruit.

However, the scientists have gone further – they needed to test if the gene could be passed over to the next generations of plants. They took the seeds of the transgenic tomatoes, couched them and grew the second generation tomatoes, which also happened to be transgenic. The ante-gene protein was present in their fruit.

“The cultivated transgenic tomato plants are worth to be considered in terms of creating an edible vaccine against HIV/AIDS and hepatite B on their basis”, this conclusion was made by the scientists. But how is this prospective edible vaccine supposed to work? Protein-antigen would interact with the mucous membrane of the gastrointestinal tract, activating the so-called mucous type of immune protection. As a result, the organism would synthesize antibodies against virus protein. The advantage of edible vaccines compared to injections is the absence of risk of passing over infections, edible vaccines are comparatively inexpensive and do not require any special facilities for storage and transportation. And finally, they are tasty!

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>