Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autoimmune and genetic diseases

16.07.2004



Autoimmune diseases are quite complex and this is due to the fact that these illnesses do not depend on just one gene. Thus, in order to find a suitable treatment, it is not enough to identify a gene involved in the development of the disease – each and every one has to be identified. To this end, a number of strategies have been design; for example, many geneticists have begun to analyse the genetic differences between healthy individuals and ill ones. A team at the Leioa campus of the University of the Basque Country are using this very strategy in the study of lupus - an autoimmune disease.

Differences in the markers

All of us are genetically very similar, almost the same, in fact. If two people are chosen at random, 99.9% of their genome is identical. Even so, we observe that these two persons have differences, for example, physical aspect or susceptibility to certain illnesses. Some of these differences are found in the genome markers.



The markers (single nucleotide polymorphism or SNP) are usually located at concrete points along the genome and contain information about the genes in close proximity to these. If the genome were a highway, the markers would be milestones; the genome has thousands of them.

Each one of these SNP may be represented by a letter corresponding to the marker nucleotide. There are four nucleotides in the DNA: adenine, cytosine, guanine and thymine. A number of studies have already identified the relation between certain markers ad a number of diseases. Moreover, the markers provide a way of analysing the genome as a whole and, thereby, in the case of autoimmune illnesses, all the genes involved can be found.

In this analysis, the differences between the markers of healthy and ill people are studied. If, in a marker, adenine is normally present in both healthy and ill individuals, then it is clear that there is no difference here and this marker is not one that defines the illness. On the other hand, if thymine appears instead of adenine in the sick individuals, this marker may be related to the disease. Once these markers have been identified, the search for those genes involved begins close to these markers.

But, in order to analyse the differences between the markers, these have to be first identified. This is the work being undertaken at the Leioa campus.

Identification of markers

In order to identify the markers of an individual person, a sample of their blood is required. From this sample the individual’s DNA is extracted in order to analyse the markers. There are a number of techniques available to this end but normally, depending on the nucleotide, it is visualised in one colour or another. So, depending on the colour, the nucleotide of each marker is identified.

These identifications have to be repeated until a data base of markers of healthy and ill persons is completed. Finally, with the help of computers, the markers which define the difference between both groups of individuals are established. But the work is not finished there. Given that these results still have a long road to travel to find the genes involved in the disease and to find treatment for its cure.

Garazi Andonegi | Basque research
Further information:
http://www.elhuyar.com
http://www.ehu.es

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>