Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autoimmune and genetic diseases

16.07.2004



Autoimmune diseases are quite complex and this is due to the fact that these illnesses do not depend on just one gene. Thus, in order to find a suitable treatment, it is not enough to identify a gene involved in the development of the disease – each and every one has to be identified. To this end, a number of strategies have been design; for example, many geneticists have begun to analyse the genetic differences between healthy individuals and ill ones. A team at the Leioa campus of the University of the Basque Country are using this very strategy in the study of lupus - an autoimmune disease.

Differences in the markers

All of us are genetically very similar, almost the same, in fact. If two people are chosen at random, 99.9% of their genome is identical. Even so, we observe that these two persons have differences, for example, physical aspect or susceptibility to certain illnesses. Some of these differences are found in the genome markers.



The markers (single nucleotide polymorphism or SNP) are usually located at concrete points along the genome and contain information about the genes in close proximity to these. If the genome were a highway, the markers would be milestones; the genome has thousands of them.

Each one of these SNP may be represented by a letter corresponding to the marker nucleotide. There are four nucleotides in the DNA: adenine, cytosine, guanine and thymine. A number of studies have already identified the relation between certain markers ad a number of diseases. Moreover, the markers provide a way of analysing the genome as a whole and, thereby, in the case of autoimmune illnesses, all the genes involved can be found.

In this analysis, the differences between the markers of healthy and ill people are studied. If, in a marker, adenine is normally present in both healthy and ill individuals, then it is clear that there is no difference here and this marker is not one that defines the illness. On the other hand, if thymine appears instead of adenine in the sick individuals, this marker may be related to the disease. Once these markers have been identified, the search for those genes involved begins close to these markers.

But, in order to analyse the differences between the markers, these have to be first identified. This is the work being undertaken at the Leioa campus.

Identification of markers

In order to identify the markers of an individual person, a sample of their blood is required. From this sample the individual’s DNA is extracted in order to analyse the markers. There are a number of techniques available to this end but normally, depending on the nucleotide, it is visualised in one colour or another. So, depending on the colour, the nucleotide of each marker is identified.

These identifications have to be repeated until a data base of markers of healthy and ill persons is completed. Finally, with the help of computers, the markers which define the difference between both groups of individuals are established. But the work is not finished there. Given that these results still have a long road to travel to find the genes involved in the disease and to find treatment for its cure.

Garazi Andonegi | Basque research
Further information:
http://www.elhuyar.com
http://www.ehu.es

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>