Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autoimmune and genetic diseases

16.07.2004



Autoimmune diseases are quite complex and this is due to the fact that these illnesses do not depend on just one gene. Thus, in order to find a suitable treatment, it is not enough to identify a gene involved in the development of the disease – each and every one has to be identified. To this end, a number of strategies have been design; for example, many geneticists have begun to analyse the genetic differences between healthy individuals and ill ones. A team at the Leioa campus of the University of the Basque Country are using this very strategy in the study of lupus - an autoimmune disease.

Differences in the markers

All of us are genetically very similar, almost the same, in fact. If two people are chosen at random, 99.9% of their genome is identical. Even so, we observe that these two persons have differences, for example, physical aspect or susceptibility to certain illnesses. Some of these differences are found in the genome markers.



The markers (single nucleotide polymorphism or SNP) are usually located at concrete points along the genome and contain information about the genes in close proximity to these. If the genome were a highway, the markers would be milestones; the genome has thousands of them.

Each one of these SNP may be represented by a letter corresponding to the marker nucleotide. There are four nucleotides in the DNA: adenine, cytosine, guanine and thymine. A number of studies have already identified the relation between certain markers ad a number of diseases. Moreover, the markers provide a way of analysing the genome as a whole and, thereby, in the case of autoimmune illnesses, all the genes involved can be found.

In this analysis, the differences between the markers of healthy and ill people are studied. If, in a marker, adenine is normally present in both healthy and ill individuals, then it is clear that there is no difference here and this marker is not one that defines the illness. On the other hand, if thymine appears instead of adenine in the sick individuals, this marker may be related to the disease. Once these markers have been identified, the search for those genes involved begins close to these markers.

But, in order to analyse the differences between the markers, these have to be first identified. This is the work being undertaken at the Leioa campus.

Identification of markers

In order to identify the markers of an individual person, a sample of their blood is required. From this sample the individual’s DNA is extracted in order to analyse the markers. There are a number of techniques available to this end but normally, depending on the nucleotide, it is visualised in one colour or another. So, depending on the colour, the nucleotide of each marker is identified.

These identifications have to be repeated until a data base of markers of healthy and ill persons is completed. Finally, with the help of computers, the markers which define the difference between both groups of individuals are established. But the work is not finished there. Given that these results still have a long road to travel to find the genes involved in the disease and to find treatment for its cure.

Garazi Andonegi | Basque research
Further information:
http://www.elhuyar.com
http://www.ehu.es

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>