Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse brain stem cells capable of converting into blood vessel cells

15.07.2004


Adult stem cells in the brains of mice possess a broader differentiation potential than previously thought and may be capable of developing into other cell types including those involved in the formation of new blood vessels, according to a new study supported by the National Institute on Aging (NIA), a part of the National Institutes of Health. The finding could help resolve a critical question about these promising, but still mystifying cells. The report by Fred H. Gage, Ph.D., and colleagues at the Salk Institute in La Jolla, CA, and Kumamoto University in Japan, appears in the July 15, 2004, issue of Nature.

Adult stem cells in the brain were proposed to be restricted to the generation of neurons and cells, such as glial cells, that support neuron function. Experiments over the past several years have raised the possibility that stem cells from the brain may be able to give rise to additional cell types, a phenomenon known as plasticity. But recent findings have challenged this theory, suggesting that many of these stem cells merely merge or "fuse" with an existing cell within a tissue forming a hybrid that takes on the pre-existing cell’s functions.

"Resolving this issue is important because fused cells may have a different therapeutic potential than stem cells that differentiate into new cells, says Bradley C. Wise, Ph.D., of the NIA’s Neuroscience and Neuropsychology of Aging Program. "While this new finding doesn’t fully answer this vital question, it keeps open the possibility that adult stem cells from different organs one day may be harnessed to help prevent and treat neurological disorders."



In their experiments, Gage and his colleagues grew mouse brain stem cells, which form neurons and glial cells, in the same culture dishes with human endothelial cells, which form the lining of blood vessels. Over time, about 6 percent of the mouse neural stem cells began to show signs that they had developed into cells similar to endothelial cells. The new cells expressed CD146, Flk-1 and VE Cadherin, protein markers that are associated with endothelial cells. They also retained a single nucleus and had only mouse chromosomes, suggesting they had converted into a different type of cell rather than merged with an existing human endothelial cell. Similar results were seen when these same neural stem cells were transplanted into the brains of mice early in development.

| EurekAlert!
Further information:
http://www.nia.nih.gov

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>