Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse brain stem cells capable of converting into blood vessel cells

15.07.2004


Adult stem cells in the brains of mice possess a broader differentiation potential than previously thought and may be capable of developing into other cell types including those involved in the formation of new blood vessels, according to a new study supported by the National Institute on Aging (NIA), a part of the National Institutes of Health. The finding could help resolve a critical question about these promising, but still mystifying cells. The report by Fred H. Gage, Ph.D., and colleagues at the Salk Institute in La Jolla, CA, and Kumamoto University in Japan, appears in the July 15, 2004, issue of Nature.

Adult stem cells in the brain were proposed to be restricted to the generation of neurons and cells, such as glial cells, that support neuron function. Experiments over the past several years have raised the possibility that stem cells from the brain may be able to give rise to additional cell types, a phenomenon known as plasticity. But recent findings have challenged this theory, suggesting that many of these stem cells merely merge or "fuse" with an existing cell within a tissue forming a hybrid that takes on the pre-existing cell’s functions.

"Resolving this issue is important because fused cells may have a different therapeutic potential than stem cells that differentiate into new cells, says Bradley C. Wise, Ph.D., of the NIA’s Neuroscience and Neuropsychology of Aging Program. "While this new finding doesn’t fully answer this vital question, it keeps open the possibility that adult stem cells from different organs one day may be harnessed to help prevent and treat neurological disorders."



In their experiments, Gage and his colleagues grew mouse brain stem cells, which form neurons and glial cells, in the same culture dishes with human endothelial cells, which form the lining of blood vessels. Over time, about 6 percent of the mouse neural stem cells began to show signs that they had developed into cells similar to endothelial cells. The new cells expressed CD146, Flk-1 and VE Cadherin, protein markers that are associated with endothelial cells. They also retained a single nucleus and had only mouse chromosomes, suggesting they had converted into a different type of cell rather than merged with an existing human endothelial cell. Similar results were seen when these same neural stem cells were transplanted into the brains of mice early in development.

| EurekAlert!
Further information:
http://www.nia.nih.gov

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>