Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dog genome assembled

15.07.2004


Canine genome available now to research community worldwide


Tasha, the boxer whose DNA was sequenced



The first draft of the dog genome sequence has been deposited into free public databases for use by biomedical and veterinary researchers around the globe, the National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), announced today.

A team led by Kerstin Lindblad-Toh, Ph.D., of the Broad Institute of MIT and Harvard, Cambridge, Mass., and Agencourt Bioscience Corp., Beverly, Mass., successfully assembled the genome of the domestic dog (Canis familiaris). The breed of dog sequenced was the boxer, which was chosen after analyses of 60 dog breeds found it was one of the breeds with the least amount of variation in its genome and therefore likely to provide the most reliable reference genome sequence.


The initial assembly is based on seven-fold coverage of the dog genome. Researchers can access the sequence data through the following public databases: GenBank (http://www.ncbi.nih.gov/Genbank) at NIH’s National Center for Biotechnology Information (NCBI); EMBL Bank (www.ebi.ac.uk/embl/index.html) at the European Molecular Biology Laboratory’s Nucleotide Sequence Database; and the DNA Data Bank of Japan (www.ddbj.nig.ac.jp). The data can also be viewed through the UCSC Genome Browser (http://www.genome.ucsc.edu/) at the University of California at Santa Cruz and the Ensembl Genome Browser (www.ensembl.org) at the Wellcome Trust Sanger Institute in Cambridge, England. Viewing capabilities also will be available in August at NCBI’s Map Viewer (http://www.ncbi.nlm.nih.gov/mapview/).

The NHGRI-supported researchers are currently comparing the dog and human genome sequences and plan to publish results of their analysis in the next several months.

The dog genome is similar in size to the genomes of humans and other mammals, containing approximately 2.5 billion DNA base pairs. Due to a long history of selective breeding, many types of dogs are prone to genetic diseases that are difficult to study in humans, such as cancer, heart disease, deafness, blindness and autoimmune disorders. In addition, the dog is an important model for the genetics of behavior and is used extensively in pharmaceutical research.

To best characterize disease in dogs, it is important to have a sufficient number of markers in the genome. Therefore, in addition to the boxer, nine other dog breeds, four wolves and a coyote were sampled to generate markers that can be used in disease studies in any dog breed. A preliminary set of about 600,000 single nucleotide polymorphisms (SNPs), which amounts to a SNP roughly every 5,000 DNA base pairs, is currently being aligned to the released assembly. The reads used to identify the SNPs are publicly available in NCBI’s Trace Archive (http://www.ncbi.nlm.nih.gov/Traces/trace.cgi) and the SNPs will be available shortly at the Single Nucleotide Polymorphism database, dbSNP (http://www.ncbi.nlm.nih.gov/SNP/).

Sequencing of the dog genome began in June 2003. NHGRI provided about $30 million in funding for the project to the Broad Institute, which is part of NHGRI’s Large-Scale Sequencing Research Network.

To learn more about the rapidly expanding field of comparative genomic analysis, go to: www.genome.gov/10005835. To read the white paper that outlines the scientific rationale and strategy for sequencing the dog genome, go to: http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/CanineSEQedited.pdf

| EurekAlert!
Further information:
http://www.nhgri.nih.gov

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>