Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings suggest need for new view of p53 cancer protein’s interaction with DNA


Perhaps the most commonly mutated of all cancer-linked genes is the gene for a tumor suppressor called p53. Scientists estimate that at least half of human cancers involve mutant p53. In the course of performing its regular duties, the normal p53 protein binds to DNA, and a number of cancer-linked p53 mutations affect the DNA-binding region of the p53 protein.

But precisely how does the p53 protein bind to DNA? Since DNA binding is crucial to the protein’s usual function, the answer to this question is key to drug development efforts aimed at countering the effects of p53 mutations. Scientists thought that they had a good window on the p53 protein’s interactions with DNA from structural studies that showed a single copy of the protein bound to DNA in a particular conformation.

Now a team of researchers from The Wistar Institute, the Memorial Sloan-Kettering Cancer Center, and the Howard Hughes Medical Institute report on new structural studies that will likely lead scientists to revise their views of how the p53 protein binds to DNA. The findings appear in today’s issue of the journal Structure.

"Mutant forms of p53 in human cancer are often defective in their binding to DNA, and a number of groups are trying to develop drugs that might treat cancer by restoring the DNA-binding activity of these mutants," says Thanos D. Halazonetis, D.D.S., Ph.D., associate professor in the molecular and cellular oncogenesis program at Wistar and senior author on the Structure study. "A full understanding of precisely how p53 binds to DNA is essential for this work, however. Our studies suggest that we may need to adjust the existing model of how p53 binds to DNA."

Taking advantage of the fact that evolution commonly conserves vital proteins from species to species, Halazonetis and his colleagues solved the structure of the binding region of a protein called Cep-1 from C. elegans, a roundworm, and compared it to the binding region of human p53. Their assumption was that, because the Cep-1 protein and human p53 bind to nearly identical DNA sequences in their respective genomes, their structures would also be quite similar. What they found instead was an important structural difference in Cep-1 that would prevent it from binding to its DNA sequence in the same way p53 has been shown to do to its.

At first glance, these results would seem to be more confusing than helpful. Halazonetis believes, however, that resolution of the apparent conflict lies in remembering that the p53 protein in its natural cellular environment assembles itself into tetramers – symmetrical molecules made up of four copies of the p53 protein. Halazonetis hypothesizes that both Cep-1 and p53 exist primarily as tetramers under normal circumstances and that it is in that form that they bind their respective, but nearly identical, DNA sequences. Small structural changes brought about in the formation of the tetramers would allow human p53 and Cep-1 to adopt identical conformations and would therefore explain how these two proteins recognize the same DNA sequence.

"This would have important implications for the development of anti-cancer drugs targeting the activity of p53, because these drug development efforts will require a very detailed understanding of how p53 binds DNA," Halazonetis says.

In addition to senior author Halazonetis, the other Wistar-based authors on the Structure study include first author Yentram Huyen, a University of Pennsylvania graduate student, and Elena S. Stavridi, Ph.D. The other coauthors are Philip D. Jeffrey at Memorial Sloan-Kettering Cancer Center; Nikola P. Pavletich, at the Howard Hughes Medical Institute and Memorial Sloan-Kettering Cancer Center; and W. Brent Derry and Joel H. Rothman at the University of California, Santa Barbara (Derry is currently at The Hospital for Sick Children, Toronto).

| EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>