Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers tackle mitosis

15.07.2004


EMBL and partners begin MitoCheck, a multinational research project on cell cycle regulation

Scientists at the European Molecular Biology Laboratory (EMBL) join forces with top scientists from eleven research institutes in Austria, Germany, Italy, France and the United Kingdom for "MitoCheck" - the largest integrated research project on cell cycle control within the European Commission’s 6th Framework Programme (FP6). The partners will receive an 8.5 million Euro grant to address a fundamental question: How is cell division regulated?

Cell division (or "mitosis") is one of the key processes of life. Mistakes during mitosis can cause infertility and mental retardation, and can contribute to cancer. For the most part, mitosis is still poorly understood. Scientists do know that protein kinases - a certain type of enzyme - play a key role, but researchers don’t know how these enzymes bring about the important changes in cells that cause them to divide. To understand cell division in a comprehensive manner, the MitoCheck consortium of European scientists will systematically hunt for all genes that are required for division and then check the products of these genes to see how they are regulated by mitotic kinases.



"This project is vital to understanding one of the most basic processes of life - making two cells out of one. Here at EMBL, we will identify which genes are required for mitosis by suppressing them gene-by-gene in live human cells and testing whether they can still divide afterwards," notes Jan Ellenberg, EMBL Group Leader and co-initiator of the MitoCheck project.

To achieve this, EMBL scientists use a method called "RNA interference," where RNA molecules can target and silence specific genes involved in mitosis. Another MitoCheck partner, the Max-Planck Institute of Cell Biology and Genetics in Dresden will provide a vast library of these molecules. About 20,000 genes will be suppressed one-by-one and EMBL researchers will make movies of the cells undergoing division, using sophisticated microscopes developed by Rainer Pepperkok, Jan Ellenberg and Leica Microsystems. Several hundred thousand movies will be produced, filming each group of cells over a 48-hour period, to capture the full impact of silencing particular genes. The task of analyzing the enormous amount of data will be accomplished in a close collaboration of scientists at EMBL and the German Cancer Research Centre (DKFZ).

The end result of the work at EMBL will be a comprehensive list of genes required for mitosis in human cells. But most importantly, for the first time, scientists will know exactly which genes are active during mitosis and what happens in the cell when these genes are suppressed. This information will be used by all the partners in this European project to determine the biochemical regulation of mitotic genes, and to test them as tools for cancer diagnosis. All data produced through MitoCheck will be readily available to the scientific community and the public - through databases at the DKFZ, and at The Wellcome Trust Sanger Institute, another MitoCheck partner.

"This project is an excellent example of a European research network," Jan Ellenberg says. "We have assembled a group of top scientists across Europe, each of whom is contributing an essential piece towards a common goal - understanding mitosis."

Trista Dawson | EMBL
Further information:
http://www.embl.de
http://www.embl.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>