Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers tackle mitosis

15.07.2004


EMBL and partners begin MitoCheck, a multinational research project on cell cycle regulation

Scientists at the European Molecular Biology Laboratory (EMBL) join forces with top scientists from eleven research institutes in Austria, Germany, Italy, France and the United Kingdom for "MitoCheck" - the largest integrated research project on cell cycle control within the European Commission’s 6th Framework Programme (FP6). The partners will receive an 8.5 million Euro grant to address a fundamental question: How is cell division regulated?

Cell division (or "mitosis") is one of the key processes of life. Mistakes during mitosis can cause infertility and mental retardation, and can contribute to cancer. For the most part, mitosis is still poorly understood. Scientists do know that protein kinases - a certain type of enzyme - play a key role, but researchers don’t know how these enzymes bring about the important changes in cells that cause them to divide. To understand cell division in a comprehensive manner, the MitoCheck consortium of European scientists will systematically hunt for all genes that are required for division and then check the products of these genes to see how they are regulated by mitotic kinases.



"This project is vital to understanding one of the most basic processes of life - making two cells out of one. Here at EMBL, we will identify which genes are required for mitosis by suppressing them gene-by-gene in live human cells and testing whether they can still divide afterwards," notes Jan Ellenberg, EMBL Group Leader and co-initiator of the MitoCheck project.

To achieve this, EMBL scientists use a method called "RNA interference," where RNA molecules can target and silence specific genes involved in mitosis. Another MitoCheck partner, the Max-Planck Institute of Cell Biology and Genetics in Dresden will provide a vast library of these molecules. About 20,000 genes will be suppressed one-by-one and EMBL researchers will make movies of the cells undergoing division, using sophisticated microscopes developed by Rainer Pepperkok, Jan Ellenberg and Leica Microsystems. Several hundred thousand movies will be produced, filming each group of cells over a 48-hour period, to capture the full impact of silencing particular genes. The task of analyzing the enormous amount of data will be accomplished in a close collaboration of scientists at EMBL and the German Cancer Research Centre (DKFZ).

The end result of the work at EMBL will be a comprehensive list of genes required for mitosis in human cells. But most importantly, for the first time, scientists will know exactly which genes are active during mitosis and what happens in the cell when these genes are suppressed. This information will be used by all the partners in this European project to determine the biochemical regulation of mitotic genes, and to test them as tools for cancer diagnosis. All data produced through MitoCheck will be readily available to the scientific community and the public - through databases at the DKFZ, and at The Wellcome Trust Sanger Institute, another MitoCheck partner.

"This project is an excellent example of a European research network," Jan Ellenberg says. "We have assembled a group of top scientists across Europe, each of whom is contributing an essential piece towards a common goal - understanding mitosis."

Trista Dawson | EMBL
Further information:
http://www.embl.de
http://www.embl.org

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>