Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers tackle mitosis

15.07.2004


EMBL and partners begin MitoCheck, a multinational research project on cell cycle regulation

Scientists at the European Molecular Biology Laboratory (EMBL) join forces with top scientists from eleven research institutes in Austria, Germany, Italy, France and the United Kingdom for "MitoCheck" - the largest integrated research project on cell cycle control within the European Commission’s 6th Framework Programme (FP6). The partners will receive an 8.5 million Euro grant to address a fundamental question: How is cell division regulated?

Cell division (or "mitosis") is one of the key processes of life. Mistakes during mitosis can cause infertility and mental retardation, and can contribute to cancer. For the most part, mitosis is still poorly understood. Scientists do know that protein kinases - a certain type of enzyme - play a key role, but researchers don’t know how these enzymes bring about the important changes in cells that cause them to divide. To understand cell division in a comprehensive manner, the MitoCheck consortium of European scientists will systematically hunt for all genes that are required for division and then check the products of these genes to see how they are regulated by mitotic kinases.



"This project is vital to understanding one of the most basic processes of life - making two cells out of one. Here at EMBL, we will identify which genes are required for mitosis by suppressing them gene-by-gene in live human cells and testing whether they can still divide afterwards," notes Jan Ellenberg, EMBL Group Leader and co-initiator of the MitoCheck project.

To achieve this, EMBL scientists use a method called "RNA interference," where RNA molecules can target and silence specific genes involved in mitosis. Another MitoCheck partner, the Max-Planck Institute of Cell Biology and Genetics in Dresden will provide a vast library of these molecules. About 20,000 genes will be suppressed one-by-one and EMBL researchers will make movies of the cells undergoing division, using sophisticated microscopes developed by Rainer Pepperkok, Jan Ellenberg and Leica Microsystems. Several hundred thousand movies will be produced, filming each group of cells over a 48-hour period, to capture the full impact of silencing particular genes. The task of analyzing the enormous amount of data will be accomplished in a close collaboration of scientists at EMBL and the German Cancer Research Centre (DKFZ).

The end result of the work at EMBL will be a comprehensive list of genes required for mitosis in human cells. But most importantly, for the first time, scientists will know exactly which genes are active during mitosis and what happens in the cell when these genes are suppressed. This information will be used by all the partners in this European project to determine the biochemical regulation of mitotic genes, and to test them as tools for cancer diagnosis. All data produced through MitoCheck will be readily available to the scientific community and the public - through databases at the DKFZ, and at The Wellcome Trust Sanger Institute, another MitoCheck partner.

"This project is an excellent example of a European research network," Jan Ellenberg says. "We have assembled a group of top scientists across Europe, each of whom is contributing an essential piece towards a common goal - understanding mitosis."

Trista Dawson | EMBL
Further information:
http://www.embl.de
http://www.embl.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>