Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Cells’ Powerhouse "Clogged" in Lou Gehrig’s Disease

15.07.2004


By studying rodent models of the relatively rare inherited form of Lou Gehrig’s disease and tissue samples from a patient with the condition, scientists have discovered the first evidence that damage to nerve cell powerhouses is directly responsible for these cells’ death. The findings appear in the July 9 issue of Neuron.



The research team from the University of California San Diego, Johns Hopkins and elsewhere discovered that dysfunctional proteins clog the transport system that brings vital substances into mitochondria, the tiny organelles that provide energy to cells. This mitochondrial damage occurs in muscle-controlling nerve cells, the researchers report, helping explain the selective nature of inherited amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease.

"Mitochondria don’t look normal in motor neurons in animal models of ALS and in patients with ALS, but this is the first study that links ALS and a specific problem with the mitochondria," says study co-author Jeffrey Rothstein, M.D., Ph.D., professor of neurology and director of the Robert Packard Center for ALS Research at Johns Hopkins.


The discovery provides new avenues to try to prevent or treat the progressive, fatal condition, say the researchers, and creates the possibility that mitochondria also might be involved in the more common forms of ALS or in other neurodegenerative diseases.

Inherited ALS, which accounts for less than 5 percent of ALS cases, is caused by a number of different mutations in the gene for superoxide dismutase, or SOD1, an enzyme that normally helps clean toxic molecules from cells. Each group of mice and rats studied by the researchers had been engineered to carry one of these mutations.

By studying whole mitochondria purified from the brain, spinal cord and other tissues from the mice and rats, and a variety of samples taken from an ALS patient at autopsy, the researchers discovered that the outer mitochondrial surface was clogged with mutant SOD1 protein in spinal cord nerve cells but not in other tissues.

"In essence, the proteins literally gum up the works," says the study’s leader, Don Cleveland, Ph.D., a scientist at UCSD and a researcher in the Packard Center.

The researchers suggest that the "works" for mitochondria in muscle-controlling nerves might be different from that in other cells. That uniqueness could explain why only the motor neurons’ mitochondria are damaged and only those cells die, even though every cell in a rat, mouse or person with inherited ALS carries the instructions for the mutant SOD1.

"We’re viewing mitochondrial involvement as the greatest insult to the spinal cord cells in this form of ALS," Cleveland says. "We believe it’s what pushes them over the edge."

The damaged mitochondria cause many problems and push the cell irreversibly toward death. "We’ve long known, for example, that having abnormal mitochondria makes neurons susceptible to injury from an excess of the chemical transmitter glutamate," says Rothstein, who notes that glutamate toxicity is a well-recognized aspect of ALS.

The scientists are beginning to test the potential role of mitochondrial involvement in the more common, sporadic forms of ALS and to try to target cell death and toxicity that stem from mitochondrial damage.

The study was funded by the U.S. National Institutes of Health, the Packard Center for ALS Research at Johns Hopkins, the Spinal Cord Foundation, the Bjorklund Foundation for ALS Research and the Paralyzed Veterans of America Spinal Cord Research Foundation.

Authors on this paper are Cleveland, Jian Liu, Concepcion Lillo, Christine Velde, Christopher Ward, Timothy Miller and David Williams of UCSD; Rothstein, Jamuna Subramaniam and Philip Wong of Johns Hopkins (Wong is also with the Packard Center); P. Andreas Jonsson, Peter Andersen, Stefan Marklund and Thomas Brannstrom at Umea University in Sweden; and Ole Gredal of the Bispebjerg Hospital in Copenhagen, Denmark.

| newswise
Further information:
http://www.hopkinsmedicine.org
http://www.alscenter.org

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>