Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Cells’ Powerhouse "Clogged" in Lou Gehrig’s Disease

15.07.2004


By studying rodent models of the relatively rare inherited form of Lou Gehrig’s disease and tissue samples from a patient with the condition, scientists have discovered the first evidence that damage to nerve cell powerhouses is directly responsible for these cells’ death. The findings appear in the July 9 issue of Neuron.



The research team from the University of California San Diego, Johns Hopkins and elsewhere discovered that dysfunctional proteins clog the transport system that brings vital substances into mitochondria, the tiny organelles that provide energy to cells. This mitochondrial damage occurs in muscle-controlling nerve cells, the researchers report, helping explain the selective nature of inherited amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease.

"Mitochondria don’t look normal in motor neurons in animal models of ALS and in patients with ALS, but this is the first study that links ALS and a specific problem with the mitochondria," says study co-author Jeffrey Rothstein, M.D., Ph.D., professor of neurology and director of the Robert Packard Center for ALS Research at Johns Hopkins.


The discovery provides new avenues to try to prevent or treat the progressive, fatal condition, say the researchers, and creates the possibility that mitochondria also might be involved in the more common forms of ALS or in other neurodegenerative diseases.

Inherited ALS, which accounts for less than 5 percent of ALS cases, is caused by a number of different mutations in the gene for superoxide dismutase, or SOD1, an enzyme that normally helps clean toxic molecules from cells. Each group of mice and rats studied by the researchers had been engineered to carry one of these mutations.

By studying whole mitochondria purified from the brain, spinal cord and other tissues from the mice and rats, and a variety of samples taken from an ALS patient at autopsy, the researchers discovered that the outer mitochondrial surface was clogged with mutant SOD1 protein in spinal cord nerve cells but not in other tissues.

"In essence, the proteins literally gum up the works," says the study’s leader, Don Cleveland, Ph.D., a scientist at UCSD and a researcher in the Packard Center.

The researchers suggest that the "works" for mitochondria in muscle-controlling nerves might be different from that in other cells. That uniqueness could explain why only the motor neurons’ mitochondria are damaged and only those cells die, even though every cell in a rat, mouse or person with inherited ALS carries the instructions for the mutant SOD1.

"We’re viewing mitochondrial involvement as the greatest insult to the spinal cord cells in this form of ALS," Cleveland says. "We believe it’s what pushes them over the edge."

The damaged mitochondria cause many problems and push the cell irreversibly toward death. "We’ve long known, for example, that having abnormal mitochondria makes neurons susceptible to injury from an excess of the chemical transmitter glutamate," says Rothstein, who notes that glutamate toxicity is a well-recognized aspect of ALS.

The scientists are beginning to test the potential role of mitochondrial involvement in the more common, sporadic forms of ALS and to try to target cell death and toxicity that stem from mitochondrial damage.

The study was funded by the U.S. National Institutes of Health, the Packard Center for ALS Research at Johns Hopkins, the Spinal Cord Foundation, the Bjorklund Foundation for ALS Research and the Paralyzed Veterans of America Spinal Cord Research Foundation.

Authors on this paper are Cleveland, Jian Liu, Concepcion Lillo, Christine Velde, Christopher Ward, Timothy Miller and David Williams of UCSD; Rothstein, Jamuna Subramaniam and Philip Wong of Johns Hopkins (Wong is also with the Packard Center); P. Andreas Jonsson, Peter Andersen, Stefan Marklund and Thomas Brannstrom at Umea University in Sweden; and Ole Gredal of the Bispebjerg Hospital in Copenhagen, Denmark.

| newswise
Further information:
http://www.hopkinsmedicine.org
http://www.alscenter.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>