Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tarantula Venom Peptide Shows Promise as a Drug


A tarantula venom peptide, GsMTx4, known to affect many organs, can be manipulated to withstand destruction in the stomach, making it a promising candidate for drugs that could treat cardiac arrhythmias, muscular dystrophy and many other conditions, University at Buffalo biophysicists have shown.

Moreover, the peptide, which is amphiphilic -- meaning fat-soluble on one side and water-soluble on the other, much like a detergent -- affects mechanically sensitive ion channels in membranes in a manner totally different than the standard "lock-and-key" binding mechanism.

Results of the research appear in the July 8 issue of the journal Nature.

The peptide is the only agent known to specifically block stretch-sensitive channels. Unlike other membrane channels that are sensitive to electrical potential or the binding of hormones and neurotransmitters, stretch-sensitive channels are activated by changes in membrane tension.

"Stretch-sensitive channels can play a key role in many normal tissue functions," said Tom Suchyna, Ph.D., research associate in the UB Center for Single Molecule Studies and first author on the paper. "These channels are involved in hollow-organ filling such as the bladder, in heart and circulatory-system responses to changes in blood pressure, proprioception -- knowing where your limbs and head are in space and time -- and fluid balance.

"They also are involved in abnormal tissue functions such as cardiac arrhythmias, congestive heart failure, elevated calcium levels in muscular dystrophy, and angiogenesis-supported tumor growth."

Earlier research by the UB group had shown that the novel peptide inhibits stretch-sensitive channels, but the researchers didn’t know how. To gain more information on the peptide’s possible receptor, Phillip Gottlieb, Ph.D., a co-investigator from the UB Department of Physiology and Biophysics and the Hughes Center for Single Molecule Studies, created a mirror image of the molecule, referred to as "right-handed," to observe the peptide-membrane interaction.

Since almost all proteins in nature on "left-handed," right-handed proteins won’t fit into a left-handed receptor, even if they have the same amino acid sequence. "It’s like putting your right foot into your left shoe," said Suchyna.

In this case, however, they found that both proteins inhibited stretch-sensitive channels. "If the right handed GsMTx4 works as well as the left-handed, it must be interacting with the stretch-activated channel by changing the tension that the channel senses in the membrane, rather than locking onto the channel," he said. "This leads us to believe that there is something unique about the membrane that surrounds stretch-sensitive channels, and that this special membrane environment attracts GsMTx4. That would explain why this peptide blocks only this type of channel."

In addition to providing valuable information on how the peptide works, the finding that both versions blocked the channels makes the peptide an attractive drug candidate. "This was an awesome tool to find," said Fred Sachs, Ph.D., UB professor of biophysics in the Hughes Center for Single Molecule Studies and senior author on the study.

"Peptides usually don’t make good drug candidates. They can’t be given by mouth because the stomach enzymes digest them, and they can cause an immune response. But because this peptide works in its right-handed form, and the normal left-handed digestive enzymes and left-handed antibodies don’t recognize it, oral administration is a definite possibility. It may be more than a lead compound for drug development. It may work just as it is.

"If this prognosis proves correct," said Sachs, "the peptide could be an effective treatment for atrial fibrillation, incontinence, muscular dystrophy, high blood pressure and other conditions governed by stress-sensitive channels."

Suchyna said the next steps will be to investigate the environment surrounding the channels, to study the role of stretch-activated channels in cardiac arrhythmias and to mutate the peptide to make it specific for different tissues.

Studies of these peptides on a model ion channel called gramicidin, reconstituted in artificial lipid membranes, were carried out by Sonya E. Tape, a graduate student, and Olaf S. Anderson, M.D., both from the Weill Medical College of Cornell University, and Roger E. Koeppe II, Ph.D., from the University of Arkansas.

The research was supported by grants from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB’s more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs.

| newswise
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>