Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Cells Successfully Regenerated Following Spinal Cord Injury

15.07.2004


Using a combination of therapies and cell grafts, a team of University of California, San Diego (UCSD) School of Medicine researchers has promoted significant regeneration of nerve cells in rats with spinal cord injury.

The therapeutic approach successfully stimulated new nerve fibers called axons to grow and extend well beyond the site of the injury into surrounding tissue, following surgically induced spinal cord damage.

These results prove that combinational therapy can promote the vigorous growth of new axons even after a complete lesion of the spinal cord cells, with the new growth extending through implanted tissue grafts, and into the spinal cord and healthy tissue surrounding the injury site, according to Mark Tuszynski, M.D., Ph.D., professor of neurosciences at UCSD and senior author of the study. The paper is published in the July 14 issue of the Journal of Neurosciences.



“Previous studies have demonstrated reduced lesion and scarring, tissue sparing and functional recovery after acute spinal cord injury,” said Tuszynski, who also has an appointment with the Veterans Affairs Medical Center, San Diego. “This study shows unequivocally that axons can be stimulated to regenerate into a cell graft placed in a lesion site, and out again, into the spinal cord -- the potential basis for putting together a practical therapy.”

The successful regeneration followed complete lesion of the nerve site. The study, which targeted sensory axons, was not designed to test functional improvement.

Axon regeneration is one of the many challenges confronting spinal cord researchers. The axon is a critical communication path from the nerve cell, with many sensory axons extending from the spine to the brain. When the spine is severely damaged that connection is lost, and gaps form in the healed spine that fill with fluid, an environment that complicates regeneration efforts since axons can’t grow across the lesion cavity. Therefore, to be successful, regeneration therapy must stimulate growth and provide a scaffold that creates an appropriate environment to support axonal growth.

The most dramatic axonal growth seen in the UCSD study was in rats pre-treated with cyclic AMP (cAMP). The team injected cAMP, an important cellular messenger that regulates various metabolic processes, directly into the nerve cell nucleus before creating the lesions. After surgical severance of the spine, the injury site was implanted with a tissue bridge of bone marrow stromal cells and treated with neurotrophins (growth factor). In these rats, over a three-month period significant growth of axons was noted, extending into and beyond the tissue graft. Pre-treatment with cAMP could be a practical approach for treating patients with established, chronic spinal cord injuries, a possibility that is the subject of current study by the UCSD group.

Co-authors of the paper are Paul Lu, Ph.D., UCSD Department of Neurosciences; Leonard Jones Ph.D., UCSD Department of Neurosciences and Veterans Affairs Medical Center, San Diego; and Marie T. Filbin, Ph.D., Biology Department, Hunter College, New York.

The research was supported by the National Institutes of Health, the Veterans Administration, the Canadian Spinal Research Organization, and the Swiss Institute for Research into Paraplegia.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>